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ABSTRACT 
The paper deals with some open problems from the area of 
symbolic and semisymbolic modeling of linear systems, focusing 
on combining the symbolic, semisymbolic and numeric 
computation. 
 

1. INTRODUCTION 

Evolution of ever more efficient computers in recent years has 
enabled a greater utilization of the symbolic methods of circuit 
analysis in the process of design, testing, and optimization, as 
well as a combination of these methods and the classical 
numerical and semisymbolic approaches [1-7].  

The symbolic algorithms generate results in the form of analytic 
formulae. The most frequent utilization is in the area of 
generation of s-domain circuit functions of linearized circuits 
with lumped parameters. The result is then in the form of a 
rational fraction function. The coefficients belonging to the 
individual powers of the s (or z) operator are then generated as 
the sums of products of symbols, which specify the parameters of 
circuit elements. The semisymbolic result means a formula, in 
which the numerical equivalents of symbolic coefficients appear. 
Then the only symbol in the equation is the s (or z) operator. 

The symbolic and semisymbolic analyses may be applied also 
beyond the operator circuit functions. For example, combining 
semisymbolic and numerical algorithms yields time waveforms 
of circuit signals as equations. 

Today, the symbolic and semisymbolic algorithms are invaluable 
in numerous applications. A single formula may concentrate a 
large amount of numerical data, printouts and diagrams. 
Moreover, the formula offers important connections between the 
circuit and its behavior. The symbolic algorithms are also used to 
verify the circuit principle, especially in the area of synthetic 
elements, frequency filters, linear circuits containing OpAmps, 
current conveyors, and other active elements. It is possible to 
investigate more effectively the influences of parasitic elements 
and real properties of components on circuit parameters. Placing 
symbolic algorithms in optimization loops can achieve such 
results which are unrealizable when using classical numerical 

methods. A combination of the symbolic and numerical methods 
can increase the accuracy of analysis results. 

2. SYMBOLIC ALGORITHMS 
The symbolic algorithms are disproportionately more time 
expensive than the numerical algorithms. That is one reason why 
their utilization is limited to a set of smaller-sized circuits. The 
complexity and non-transparency of symbolic result are the 
second limiting factor. Due to the exponential growth of the 
numbers of symbolic result, the classical symbolic analysis of 
circuits used in praxis (tens of nodes) leads to extensive formulae 
which are either non-interpretable or they even exceed the 
potential of present-day computers. 

That is why since the mid-eighties till this time a considerable 
effort is exerted to find methods which would enable decreasing 
the result complexity by means of an approximation [1]. The 
approximation is arranged in such a way that only some terms are 
retained in the original formula according to a certain error 
criterion. This procedure can be performed only if the numerical 
values of symbolic parameters are known at least approximately. 
Three basic methods of simplification have been subsequently 
developed: Simplification After Generation (SAG), 
Simplification Before Generation (SBG), and Simplification 
During Generation (SDG). For more details see [2], [3]. 

The mathematical model of a linearized circuit is represented by 
a set of linear algebraic equations in the operator form. For the 
symbolic solution, the Cramer rule turned out to be most 
advantageous, when the generation of symbolic formula is 
reduced to the symbolic computation of the matrix determinant 
[4]. Two basic approaches exist: algebraic and topological. 

The algebraic method utilizes algebraic operations above the 
circuit matrix. Then the Laplace determinant expansion follows. 
Because of the huge number of terms of this expansion even for 
relatively small circuits, it is necessary to use special algorithms.  

For instance, the procedure by Prof. Čajka [8] starts from the fact 
that each element of the analyzed circuit has its special code. It is 
described by a special matrix – so called “stamp”. The nonzero 
stamp elements are called parameters. The parameters are written 
in the circuit matrix H by a special procedure. However, this 



matrix is not compiled by the classical method but as elements 
(atoms) in the form of a table. If the computed algebraic minor 
has n rows and n columns, then the symbolic result will contain a 
sum of several products of just n parameters that occur in the 
circuit. The algorithm finds all combinations of n parameters 
from the total number of m parameters in the H matrix and 
explores the existence of every product. It utilizes a special 
determinant expansion according to all the parameters in the 
product. In so doing there can be easily identified the 
existence/nonexistence of the examined product. Fast 
identification of the vanishing terms of the Laplace expansion of 
the determinant contributes to the considerable acceleration of 
the symbolic computation. 

The second method, so-called topological method, uses the 
Signal Flow Graph (SFG) theory for the indirect computation of 
determinants. Numerous methods belong to this category, for 
instance “Tree Enumeration Methods“, „Flow-Graph Methods“, 
etc.  

The utilization of both the algebraic and topological methods 
requires the solution of two basic problems: 

!" For the analysis of larger circuits, the method of 
generating symbolic formula has to enable the SBG or 
SDG approximation. 

!" The Cramer rule enables the solution of a general set of 
linear equations, while the equations describing an 
electrical circuit are subject to additional regularities, 
e.g. they have to fulfill Kirchhoff’s laws. This fact 
leads to the occurrence of such terms in the symbolic 
result which are mutually subtracted. The number of 
these reversible terms can be decreased by a proper 
design of the computing method. Thus we also 
decrease the memory and time requirements. 

Concerning the topological methods, the most important progress 
has been achieved in the mid- nineties. By means of the matroid 
theory, a method based on the analysis of so-called voltage and 
current circuit graph has been formulated [5]. This method: 

• does not generate reversible terms, 

• enables generation of the terms in the symbolic formula 
in descending order according to their dimension; this 
leads to a useful utilization of the SDG technique. 

In the area of matrix methods, attention was given in the eighties 
to the minimization of the reversible terms and to a subsequent 
application of the SAG method. A rather successful 
implementation is in the ISAAC program [7] by the group of 
W.Sansen. In the mid-nineties, the SBG techniques were 
developed also for some algebraic methods of symbolic analysis 
[8]. The Analog Insydes system by R.Sommer [9] works on this 
principle. 

It is apparent that the potential of algebraic methods has not been 
fully exploited. In practical experiments, the authors frequently 
stated that the different methods of compilation of circuit 
equations result in different efficiency of the approximation 
algorithms. The efficiency is measured by the number of 
remaining terms with the defined declination from the nominal 
course preserved [9]. This reality evidently results from the fact 

that the process of equation simplification has not been analyzed 
systematically from the circuit or topological point of view. 

3. OPEN PROBLEMS IN COMBINING 
(SEMI)SYMBOLIC AND NUMERIC 

ALGORITHMS 
It is often necessary to complete symbolic algorithms with 
numerical ones. For example, for numerical stability, the 
preferred computation of zeros and poles of a circuit function is 
numerical from the circuit matrix rather than from the 
coefficients of the semisymbolic result [10-16]. For the purposes 
of simplifications using the SDG technique, it is advisable to 
obtain the semisymbolic result by another way than the symbolic 
analysis.  

The computation of zeros and poles is a weak point of 
contemporary numerical analysis of large linearized circuits. The 
computation is usually done in two steps: First the deflation of 
circuit matrix is performed and then the algorithm of finding 
eigenvalues follows. The currently utilized QR and QZ 
algorithms [10-13] achieve satisfactory accuracy only while 
solving certain circuits. They mostly break down for the stuff 
systems, in the case of multiple roots, and for higher-order 
dynamic systems (around the order 50 and higher) [15]. Recently 
the authors of this contribution have worked on the so-called 
reverse generalized eigenvalue problem, which could bring 
certain improvements.  

Another ill-conditioned problem is finding the roots of 
polynomials, i.e. the computation of zeros and poles directly 
from the semisymbolic form of circuit function. It should be 
noted that the commonly preferred algorithms, implemented for 
example in MATLAB, in some cases offer significantly worse 
results than the less-known procedures [17,18]. The word length 
representing numerical values in the MATLAB language is fixed 
and limited to approximately 16 significant places. Thus the 
accuracy of computation of polynomial roots is limited. This 
drawback could however be overcome by using other languages, 
for instance MAPLE or MATHEMATICA. 

The next ill-conditioned problem – partial fraction expansion – is 
also connected to the semisymbolic analysis. Numerous methods 
have been published. The algorithm by CHIN and STEIGLITZ 
[19] shows good results. The question is whether the numerical 
precision could be increased by a combination of numerical, 
symbolic and other new approaches. Some of our present results 
indicate this possibility.  

The partial fraction decomposition is also connected with the 
problem of finding the greatest common polynomial divisor for 
the numerator and denominator of the simulated network 
function, i.e. the problem of finding the zeros and poles that are 
mutually cancelled. This procedure can suppress the influence of 
idling (dormant) parts of the network on the network function in 
question. At the same time, the numerator and denominator 
powers are decreased and finding the roots is simplified. 

4. SOLVING THE OPEN PROBLEMS 

Solving the open problems above involves a detailed analysis of 
the contemporary methods of both classical and approximate 



symbolic analyses. Consequently, these methods have to be 
optimized with the utilization of specific features of 
mathematical models which are given by the system and 
topological regularities: Finding the optimum form of the initial 
system equations, determination of the procedures and criteria of 
simplification of symbolic terms regarding the consequences of 
this simplification in the frequency, time and s-domains. 

The prerequisite is the improvement of contemporary and the 
design of new numerical methods, which would support and 
complete the symbolic methods: generalized eigenvalue problem 
of large systems, finding the roots of characteristic equation, 
finding the greatest common polynomial divisor, methods of the 
secondary roots polishing [20], etc.  

The progressive approach is represented by combined symbolic-
numerical methods with enhanced accuracy. Let us mention 
highly precise methods of finding zeros and poles based on the 
numerical principle with the utilization of so-called rational 
arithmetic. Their utilization in the algorithms of approximate 
symbolic analysis seems to be promising. Hard work is expected 
in the area of modification of the algorithms of generalized 
eigenvalue problem with the utilization of sparse techniques. 

5. CONCLUSION 

The main pending issues of (semi)symbolic/numeric analysis of 
large linear circuits are outlined. Their solution requires 
cooperation of workers from the areas of numerical mathematics 
and system/circuit theory. Authors of this contribution already 
have developed some special algorithms, which are integrated 
step by step in the SNAP (Symbolic and Numeric Analysis 
Program) [21-23] and CIA (Circuit Interactive Analyzer) [15] 
software tools. 
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