Návody pro počítačové cvičení č. 2 a 3 předmětu BMPS

 Nakreslete náhradní schéma zesilovače s tranzistorem v zapojení SE, bez stabilizace prac. bodu, pro pásmo středních kmitočtů (tj. baterie a vazební kapacitor se nahradí zkraty). Tranzistor modelujte strmostí 0.1A/V, vstupním odporem 5kohmů a výstupním odporem nekonečno (model Transistor_RS).

Určete vzorec pro napěťové zesílení a jeho hodnotu:

Určete vzorec pro vstupní odpor a jeho hodnotu:

Určete vzorec pro výstupní odpor a jeho hodnotu:

Porovnejte s teorií:

Napěťové zesílení se v SNAPu počítá jako Kv, vstupní odpor jako Zin, open a výstupní odpor jako Zout, short.

Další rozvinutí příkladu pro domácí práci, případně pro práci v rámci hodiny: Uvažujte výstupní odpor tranzistoru 100kohmů. Jak se změní výsledky?

Přidejte do schématu vstupní vazební kapacitu Cv =10uF. Nakreslete kmitočtovou charakteristiku zesílení.

Krokujte Cv a zjišťujte vliv na dolní mezní kmitočet. Srovnejte s teorií (vzorcem pro mezní kmitočet).

2. Nakreslete náhradní schéma zesilovače s tranzistorem se stabilizací prac. bodu emitorovým odporem podle obrázku. Tranzistor modelujte jako v příkladu 1.

Určete vzorec pro napěťové zesílení a jeho hodnotu, je-li výstup na kolektoru a pak na emitoru:

Určete vzorec pro vstupní odpor a jeho hodnotu:

Určete vzorec pro výstupní odpor a jeho hodnotu, je-li výstup na kolektoru a pak na emitoru:

Porovnejte s teorií:

3. Doplňte obvod z příkladu **2** o obvody pro nastavení pracovního bodu a vazební kapacitu 10uF (viz obr.). Tranzistor modelujte jako v příkladech 1 a 2.

Nakreslete kmitočtovou charakteristiku zesilovače, je-li výstup na kolektoru a pak na emitoru.

Zkuste krokovat Cv a pozorovat efekt. Srovnejte velikosti mezních kmitočtů s tím, co dává teoretický vzorec.

Odečtěte zesílení v pásmu středních kmitočtů a porovnejte s výsledky z příkladu 2:

Námět na další práci: Odpor Re zablokujte paralelním kapacitorem o kapacitě 500uF. Nakreslete kmitočtovou charakteristiku a zjistěte, jak se změnilo zesílení (odstraněno působení záporné zpětné vazby), odečtěte zesílení v pásmu středních kmitočtů:

4. Zahřívací příklad: Určete vzorec pro vstupní impedanci sériové kombinace rezistoru o odporu 9,4kohmů a induktoru o indukčnosti 22H:

Stačí do schématu umístit jen součástku typu In (vstup), výstup není třeba definovat. V SNAPu specifikujeme výpočet Zin, open.

Je možné se podívat i na průběh kmitočtové závislosti.

Rb1=82k, Rb2=12k, Rc=1k, Re=100, Cv=10u

5. Dokažte, že Prescottův obvod na obrázku simuluje sériovou kombinaci prvků z příkladu 4.

6. V editoru nakreslete schéma ekvalizéru podle obrázku. Dvojice odporů (R1, R2) a (R3, R4) modelují dva potenciometry o odporech 50kohmů, které slouží k řízení zisku ekvalizéru na nízkých a vysokých kmitočtech (zvýrazňování, resp. potlačování "hloubek" a "výšek".

Prostudujte kmitočtovou charakteristiku ekvalizéru při různých "polohách" obou potenciometrů. Začněte z poloh "jezdce uprostřed", tj. R1=R2=R3=R4=25 k Ω . Pak zkuste krokovat R1 při podmínce R2=50k-R1 a pak krokujte R3 při podmínce R4=50k-R3. Použijte editor závislostí.

Možné nastavení editoru závislostí:

Graph setu	ιp					X
Sweep 3	Step	×	Y1	Y2	Dep.	
R1=25k R2=50k-F R3=25k R4=50k-F	રા ર૩					
 ✓ 	OK				🗙 Cance	I

Posléze krokujeme R1 a pak R3:

Graph setup	×
Sweep Step X	Y1 Y2 Dep.
R1 = 10k	from 0
💿 linear	to Jok
C log	steps 5
🗸 ОК	X Cancel

7. Sériovou kombinaci RL a L nahraď te Prescottovým obvodem. Analýzou ověřte, že ekvalizér se chová stejně jako v "cívkové realizaci".

8. Exportujte symbolické výsledky řešení příkladu 7 do MATLABu. Analyzujte ekvalizér v MATLABu a sestrojte třírozměrné kmitočtové charakteristiky ekvalizéru, z nichž bude možné studovat změny charakteristik při nastavování obou potenciometrů.

Je nutné nejprve samostatně nastudovat z HELPu SNAPu základy exportu do M-souboru a zásady práce s generovanou funkcí v MATLABu.

Výsledkem exportu bude vygenerovaná funkce v souboru EQUALX.M. Následně se sestaví pomocný M-soubor KRESLENI.M.

Soubor EQUALX.M. je nutné uložit do pracovního adresáře MATLABu a spustíme MATLAB.

Příkazy v MATLABU jsou dále vypsány **modrou** barvou, **červené** jsou výsledky. V MATLABu tedy napíšeme: *equalx*

See "help equalx" for description.

help equalx

Voltage gain (open output) of circuit c:\cad\snap\pracovni\standard\examples\moje\equalx.snn

usage: equalx(s) - return complex value of circuit function for given s equalx('numer') - return vector of numerator coefficients equalx('denom') - return vector of denominator coefficients equalx('export') - export network parameters to global workspace

equalx('show') - show network parameters equalx('clear') - clear global workspace polynomials are in the Matlab style, ie. C(1)*s^N + + C(N)*s + C(N+1)						
equalx(0)	Vypíše se výsledný přenos napětí pro kmitočet 0 Hz (s=j ω =0).					
ans = 3.839835728952772e-001						
20*log10(equalx(0))	dá přenos v decibelech.					
ans = -8.313747093562707e+000						
equalx(j*2*pi*1000)	Chceme-li zjistit přenos na kmitočtu 1 kHz.					
ans = 8.897760963025113e-001 +3.559885135864286e-001i						
abs(equalx(j*2*pi*1000))	Modul a fáze přenosu budou.					
ans = $9.583471831005770e-001$						
angle(equalx(j*2*pi*1000))*180/pi						
ans = 2.180574342864527e+00	(je uveden přepočet úhlu na stupně z radiánů).					
num=equalx('numer')	Koeficienty čitatele a jmenovatele přenosové funkce					
num = 4.80457500000000e+0	006 6.03595000000000e+010 9.350000000000e+013					

den=equalx('denom')

den = 4.80457500000000e+006 6.4409500000000e+010 2.4350000000000e+014 polynomials are in the Matlab style, ie. C(1)*s^N + ... + C(N)*s + C(N+1).

freqs(num,den)

Kmitočtovou charakteristiku získáme nejsnadněji pomocí klasické matlabovské funkce.

Abychom mohli pracovat s vnitřními proměnnými funkce equalx, tj. s proměnnými R1, R2, …, krokovat je atd., musíme je nejprve exportovat do prostoru globálních proměnných MATLABu, abychom na ně "viděli" z příkazové řádky:

equalx('export')

Budeme pracovat s proměnnými R1, R2, R3 a R4 (ovládání potenciometrů). Tyto proměnné zvolíme za globální:

global R1 R2 R3 R4

kresleni

V pracovním adresáři MATLABu založíme soubor KRESLENI.M:

```
flog=(1:0.1:5);
                                    tvorba log. kmitočtové osy
                                    vektor kmitočtů od 10Hz do 100kHz, odstupňovaných logaritmicky
f=10.^flog;
                                    krokování R1od 0 do 50k\Omega po 10k\Omega
for R1=0:10000:50000,
      R2=50000-R1;
                                    dopočty R2, spolu s R1 tvoří potenciometr
                                    výpočet kmitočtové char. ekvalizéru v daném kroku
      K=equalx(j*2*pi.*f);
                                   přepočet na decibely
      Kdb=20*log10(abs(K));
      semiloqx(f,Kdb);
                                    vykreslení kmitočtové charakteristiky pro daný R1 s log. stupnicí f
                                    obrázky budou drženy na obrazovce, nebudou se přepisovat
      hold on;
end;
```

Soubor uložíme a v příkazové řádce MATLABu napíšeme jeho jméno

🛃 Figure No. 1 - 🗆 × <u>File Edit T</u>ools <u>W</u>indow <u>H</u>elp ि 😂 🖬 🚭 🕨 A 🥕 🖊 😥 🗇 25 20 15 10 5 0 -5 -10 -15 -20 -25 10^{2} 10³ 10⁴ 10⁵ 10

Pokud chceme zviditelnit pomocnou mřížku, zapíšeme

Grid

a potvrdíme. Otevře se okno výsledků:

Vytváření třírozměrného grafu: Vytvoříme soubor KRESLENIx.M:

```
viz výše; celkem 41 členů
logf = (1:0.1:5);
f=10.^logf;
                                      viz výše; celkem 41 členů
                                      matice o 50 řádcích a 41 sloupcích vyplněná nulami
z=zeros(50,41);
                                      matice o 1 řádku a 50 sloupcích vyplněná nulami
y=zeros(1,50);
                                      proběhne 50 cyklů
for i=1:50,
   R1=1000*i;
                                      krokování a výpočet odporů = ovládání potenciometrů
   R2=50000-R1;
   R3=25000;
   R4=50000-R3;
                                      výpočet amplitudové kmitočtové charakteristiky
   m=abs(equalx(j*2*pi.*f));
                                      zapsání 41 hodnot decibelové kmit. char. do řádku i matice z
   z(i,1:41)=20.*log10(m);
                                      zapsání odporu R1 do sloupce i vektoru y
   y(1,i)=R1;
end
surfc(logf,y,z)
                                      vykreslení funkce z – funkce proměnných logf a y; osa x je logaritmická
```

Před jeho spuštěním vymažeme předchozí obrázek. Výsledkem provedených instrukcí v souboru KRESLENIx je třírozměrný graf:

N ose "x" je vynesen logaritmus kmitočtu (1 až 5, tedy kmitočty od 10 do 100000Hz), na ose "y" krokovaný odpor R1 (od 0 do 50kohmů), na ose "z" přenos v decibelech.

Nyní je vhodné uspořádat okna MATLABu, obrázku a editační okno souboru KRESLENIX tak, aby se nepřekrývala. V souboru KRESLENIX vždy změníme odpor R3, klikneme na ikonu diskety pro uložení, přejdeme do okna MATLABu, zmáčkneme kurzorovou klávesu ↑, tím si vyvoláme poslední použitý příkaz (kreslenix), potvrdíme a sledujeme změnu kmitočtové charakteristiky.