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This paper discusses the results of measured pilot response to a sudden parameter change while flying an aircraft. Historically, the
American scientists McRuer and Krendel tried to describe all possible characteristics of a human behaviour model using transfer
functions and time constants by applying them to physiological human behaviour. Authors analysed those models and used analytical
model of human behaviour based on the basic elements of automated regulation. With the fast advancements in technology, especially
in simulation technology, it is easy to verify practically all theoretical suggestions, approaches and models [1]. The aim of this
verification is to imitate human behaviour while controlling a machine – including an aircraft – and to reduce the influence of human
error while flying an aircraft. All the tests described were conducted on a Cessna 152 flight simulator, at the University of Hertfordshire,
Hatfield. Students of Aviation Studies, with several tens of flight hours in real aircraft, were tested. The tests consisted of a sudden
step change in altitude. The measured results were then mathematically analysed in the MATLAB®simulation environment. The
calculated results confirm that the experimental measurements can help in other stages of research activities The individual transfer
function parameters have obtained concrete numerical value.
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1. INTRODUCTION

In today’s automated and digitalized world the stress is put on
the development of both computers and artificial intelligence.
However, a pilot or an operator is an indispensable part of any
aircraft flying. Only time will tell if a pilot (operator) could
be fully replaced by a machine and if so it will take a very
long time. That’s why the aircraft’s manufactures started to
do research on the influence of the human factor.

Some authors [2] generally define the human factor in the
form of SHELL model. The human factor influences many

processes of aircraft flying from the very beginning of entering
the cockpit, through taking off and landing procedure to stop-
ping the engines. SHELL model is composed from several
parts and for our research purposes the interaction between
man (L - Liveware, in the middle of the model) and machine
(H - Hardware) which means aircraft is important. Taking
the human efficiency into account the emphasis is put on the
ergonomics of the controls in the cockpit, the manipulation
space of the pilot, the method of entering the pre-flight data
into the Flight Management System, autopilot controls and
others avionic systems. These factors are supposed to make a
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pilot’s work easy and eliminate his psychological and physical
workload while flying a plane [3]

How will the pilot react in an unpredictable flight situation
[4] if one of the automated systems were to cut off or if a sud-
den change of position angles would accrue [5] due to weather
conditions? The authors of this paper focused on weather con-
ditions causing a sudden change of altitude or other flight pa-
rameters. Using experimental measurements from the flight
simulator a model situation was created where the pilot’s task
was to react as fast as he could and put the aircraft back to the
same altitude using only an elevator. The data from this flight
simulator was analysed. Only the most accurate and interest-
ing flight results was used like an input data into the System
Identification Toolbox and MATLAB®environment with use
an algorithm to identify parameters of a transfer function (1).

The reason is that the parameters and time constants of
the pilot (as a human) are time variables and are influenced
by many unpredictable factors such as the pilot’s experience,
tiredness, stress, surrounding noise and other random aspects
which can arise during the flight. To determine a human’s
behaviour, within a control loop, in a given flight mode is pos-
sible only after obtaining a correct pilot response in a given
mode in the correct time. The authors identified, modelled
and simulated these responses by measuring the pilot’s re-
sponses in a flight simulator. From this data the best realistic
time constants representing the pilot’s behaviour were found.
The future vision of the authors is to set limits to all the pi-
lot behaviour time constants depending on the level of their
experience and psychological and physical condition.

2. MATHEMATICAL MODEL OF A PI-
LOT BEHAVIOUR

A human-pilot character in the control system can be repre-
sented by a variety of complex block diagrams which more
or less describe most of the possible factors affecting human
behaviour. Generally, it is not possible to create one univer-
sal model fully describing the human dynamic character in
various situations during a flying process. Human behaviour
can be with certain inaccuracy, concisely described by a block
diagram as shown in figure 1:

There are three mutually connected "blocks". The input –
sensors are the pilot’s sensory organs, from where the detected
information goes into the central nervous system. The average
speed of emotion transmission is in the range of 5 to 125 ms−1.
In an automated control system this transmission feature can
be represented by a transport delay. The response time mainly
depends on the level of the pilot’s internal stress, the actual
pilot’s condition and perhaps also on some other factors. Sen-
sory organ features are in real life represented by a sensitivity
level, adaptation ability and the ability to mutually cooperate.
After processing the received signal a command to hand or
leg muscles is sent to adjust the elevator, aileron and rudder
deflections. For maintaining the requested flight parameters
the pilot uses three different types of regulators [6, 7]:

• Predictive regulator, keeping the required flight mode
based on the pilot’s received visual and sensory percep-
tion of the flight.

• Feedback regulator, created by correct visual and sensory
perception of the required flight mode.

• Precognitive regulator, recalling the learnt maneuver
from memory, i.e. a clear sequence of elevator, aileron
and rudder deflections making the required aircraft
movement.

It is very complicated to describe human/pilot behaviour math-
ematically. So far, there is no complete list of all biological and
physiological processes of the human brain and therefore it is
no possible to create a comprehensive list describing the hu-
man thinking processes upon which pilot behaviour is based.
A human – as a pilot – is able to adapt and fly various types
of aircraft after a certain amount of training. A human can
also manage complicated situations by changing and adjust-
ing his behaviour based on current conditions, and is capable
of changing his strategy and tactics based on visual input in-
formation. The decision making process and choice of future
action is, more or less, individual, especially in emergency
situations

When analysing any aircraft control with human behaviour
it is essential to take into account that all the human features
are time variables and dependent on the actual pilot condi-
tion, psychological state, tiredness and ability to adapt to a
new situation. This is all affected by long-term habits, educa-
tion, training and flight preparation. To create a mathematical
model of a human in such a moment is not easy. For modelling
human behaviour a linear model is often being used (which is
not quite correct for example regarding output value limita-
tions) with a transport delay defined by a transfer function as
follows [8–12]:

F(s) = Y (s)

X(s)
= K

(T3s + 1)

(T1s + 1) (T2s + 1)
e−τ s . (1)

where:

K - Pilot gain represents pilot habits for a given type of air-
craft control. If the pilot takes larger than necessary in-
tervention action or if a change in system amplification
occurs during the regulatory process, the system could
become unstable.

T1 - Lag time constant is related to the implementation of
learned stereotypes and pilot routines. When the pilot
repeats certain situations several times, it leads to stereo-
types and learned habits. Eventually the phase arrives
where the pilot gradually eliminates conscious brain ac-
tivity.

T2 - Neuromuscular lag time constant represents the pilot’s
delay in activity caused by the neuromuscular system.
The neuromuscular system in its entirety includes mus-
cles and sensory organs working at the spinal level (spinal
cord). Through the spinal cord the brain receives infor-
mation and can react to the external environment. The
central nervous system and peripheral nervous system
provide informational links between the organisms with
the external environment and continuously regulates pro-
cesses within the body.
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Figure 1 The human behaviour model from an automatic regulation point of view.

T3 - Lead time constant is related to the experience of the
pilot. Reflecting the pilot’s ability to predict a control in-
put which means to predict the situation that may occur.
Estimating and predicting the future state is the ability
to imagine the future steps and states of the surrounding
area. This level represents the highest level of situational
awareness when the pilot has reached such knowledge of
the state and dynamics of individual system elements that
he has the ability not only to understand the current sit-
uation, but also he is able to determine future situations.
The pilot obtains this ability via training and experience.

τ - This time constant indicates the delay of brain response
to the pilot’s musculoskeletal system and eye percep-
tion. The transport delay depends on the current state of
the neuromuscular system and also on the physical and
mental condition. Fatigue may significantly increase the
value of transport delay and the regulatory system could
become unstable.

This shape of transfer function is based on the assumption
that the pilot is behaving in a linear manner, i.e. as a linear
element. In a real regulation circuit there are always, up to a
certain extent, non-linear elements, as it is in human-machine
systems. In publications [6, 13] there is an example of an ex-
tended transfer function considering a nonlinearity of actuator.
Generally, the extended transfer function is as follows:

F(s) = Y (s)

X(s)
= K

(T3s + 1)

(T1s + 1) (T2s + 1)
e−τ s

+ remnant function, (2)

The design of the remnant function is complicated proce-
dure because it attempts to represent the non-linear component
of pilot behaviour. It is primary source is the pilot’s ability
to learn and adapt which results in non-linearity and non-
steady behaviour. The secondary contribution comes from
such things as the experimental setup and experimentally in-
jected noise that affect pilot response to other inputs. How-
ever, careful selection of the pilot model and task can help
minimize remnant effect [12].

In real life, the human operator’s control action is not linear
and is also influenced by negative aspects of non-linear ele-
ments such as hysteresis, insensitivity, saturation or non-linear
variable amplification. It is challenging, not only to identify
these elements but also to categorise or allocate them into a
regulation circuit with multiple feedbacks.

Many scientists use a transfer function for pilot compensa-
tion response as shown in (1). This equation was first pub-

lished by the English scientist Arnold Tustnin studying the
characteristics of a human regulator with manual feedback
control. Similar physiological analysis of time constants in the
aforementioned human regulator transfer function was done
in the 1970s by the American scientists McRuer and Krendel
for autopilot models [13].

According to [6] there are many publications describing
scientists assigning individual time constants to physiological
processes. However, there are many opponents stating that
this approach is not correct as neuro-motive functions and
central nervous system functions are mixed together.

Figure 2 shows the key control system blocks with the pilot
and autopilot sharing control of the aircraft. The pilot is the
main control element knowing the flight task. All the auto-
mated functions are adjusted to this condition, including the
pilot control options and Flying Control Systems. The pi-
lot’s response is, based on the pilot’s flight experience and
skills, processed at the sub-conscious level using higher brain
functions. This information is then transferred via the neuro-
muscular system creating a physical response. The pilot then
manoeuvres the aircraft using appropriate aircraft elevator de-
flection. The pilot then senses the resultant aircraft movement
via many different senses as feedback. This feedback is then
processed again by the neuromuscular system and the aircraft
elevator deflections are adjusted accordingly. The Flight Con-
trol System [15] significantly simplifies the flying process for
the pilot by checking and adjusting a whole range of flight
parameters from damping fast oscillations to flatter damping.

3. METHODS FOR EXPERIMENTAL
PARAMETER IDENTIFICATION OF
TRANSFER FUNCTION

Due to the fast development of simulation tools and infor-
mation technology, the analysis of human behaviour whilst
flying an aircraft can now be very sophisticated. Therefore
the accuracy of the individual described models becomes a
major factor. The following mathematical analysis is there-
fore dependant on the correct choice of studied parameters
and simulation environment set up.

3.1 Algorithm for Experimental Identifica-
tion of Transfer Function Parameters

It is convenient to refine the human behaviour model param-
eters using experimental measurements of human response
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Figure 2 Block diagram representing the pilot-vehicle system under manual control [14].

to external stimulus. The tested pilot is watching the exter-
nal stimulus, i.e. the step change, on the simulator screen
or instrument panels and by using the control yoke, the pi-
lot attempts to reach the required value of the step changed
parameter. The time flow of the control yoke was then input
into a PC and recorded together with the external stimulus
value. Both of these entries were then used in experimental
mathematical identification methods.

Depending on the chosen transfer function type of the pilot
behaviour model it is possible to determine time constants in
real systems using mathematical experimental identification
methods, as was successfully done, for example, in [7, 11].
If the input and output signal and the approximate shape of
the transfer function are known, the above mentioned meth-
ods can be used to refine transfer function parameters. It is
also convenient to use the MATLAB simulation environment
already containing some functions for necessary calculations.

Function fminsearch searches for a scalar function mini-
mum of multiple variables [17]. This function was used to
create, and later alter, the parameter identification algorithm
of the pilot transfer function. The algorithm is as follows:

Fei = a1s + 1

b2s2 + b1s + 1
(3)

Regard to the equation (1) the algorithm parameters are:

a1 = T3, b2 = T1T2, b1 = T1 + T2 (4)

with a defined criterion condition:

fmin =
∑

(yid − y)2. (5)

However, this algorithm can’t calculate transmission delay.
Therefore, the program was supplemented with a simple sub-
program searching for the pilot response initiation (when the
output value wasn’t zero, i.e. was higher than a very low given
value). After the time delay evaluation, the input impulse of
the identification algorithm was shifted to the beginning of the
response initiation.

3.2 System Identification Toolbox™

One of the other possible methods how to calculate parame-
ters of pilot behaviour model transfer function is using MAT-
LAB toolbox - System Identification Toolbox. This System
Identification Toolbox designs mathematical models of dy-
namic systems from measured input and output data but is not
include in basic MATLAB package. The toolbox performs
grey-box system identification for estimating parameters of
a user-defined model. This toolbox are using for develop-
ment models of a black-box system without having to fully
characterize the mathematics governing the system behaviour
for example – System Identification, Developing a Model Us-
ing White Noise Data, Prefiltering, Data Processing, Input
Design, Model Structure Selection, Prediction Error Identifi-
cation and more. The input data consisted of the measured
changes of altitude depending on control yoke deviation. The
output data consisted of measured control yoke deviation in
the longitudinal direction.

The toolbox uses a graphical user interface (GUI), which
is launched by command ident in MATLAB command win-
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dow. GUI which is shown in the figure 3 facilitates work with
organization of data and models. It is possible to use time-
domain and frequency-domain input-output data to identify
continuous-time and discrete-time transfer functions, process
models, and state-space models.

The GUI window is schematically divided into data section,
models section and working space. The data section is situ-
ated in the left, where is possible to import time-domain and
frequency-domain input-output data. Function „Time plot“,
shows input and output data waveform. In the right of fig-
ure 3 is models section which is used for import models from
MATLAB. Those models from MATLAB serve for example
for comparison of two results obtained using two different
identification methods.

There are also so called „Model View Windows“, which
corresponds to six views for examining models. It is possible
to generate these views for selected models by selecting the
corresponding check box in the Model Views area of the GUI.
To select the models which will be include in the plot just click
their icons in the Model Board(s).

• Transient response shows the transient response of the
selected models. It is possible to choose between dis-
playing impulse and step responses.

• Frequency response shows the frequency functions of the
selected models. The plot is known as a Bode plot when
the amplitude and frequency scales are logarithmic.

• Zeros and poles show the zeros and poles of the selected
models. The poles are marked by x while the zeros are
marked by o. Discrete time zeros and poles at the origin
are not displayed.

• The plots of Noise spectrum show the disturbance spectra
of the selected models. Cross spectra between different
outputs are not accessible.

Among the most important functions belong „Model out-
put“. By clicking check box the plots will show the simu-
lated (predicted) outputs of selected models. Depending on
the character of the validation data the plot takes somewhat
different forms. Regard to measured data from the flight sim-
ulator the authors were used time domain data form where the
simulated or predicted model output is shown together with
the measured validation data. The percentage of the output
variations that is reproduced by the model is displayed at the
side of the plot. A higher number means a better model. In the
middle of GUI „To workspace“ and „To LTI viewer“ boxes are
situated First function moves model to MATLAB workspace
and second function serves for graphical analysis.

If the data are correctly loaded into the toolbox it is possible
to start with data processing. Clicking on the button „Esti-
mate“ the menu is appears and from the options the „Process
Models“ is selected. Figure 4 shows the “Process Models"
window where the shape of transfer function is selected. This
window provides a number of options, for example setting of
initial guess, bounds, the number of iterations, minimization
criteria.

4. DESCRIPTION OF THE EXPERIMEN-
TAL WORKPLACE AND THE MEA-
SURING METHODS OF PILOT RE-
SPONSES

4.1 Experimental Workplace

The flight parameters and the generally measured values for
transfer function parameter identification were measured dur-
ing a three-month exchange program at the University of Hert-
fordshire, Hatfield. The university has a laboratory with flight
simulators used for pilot training as well as for research pur-
poses. The mentioned flight simulator is primarily intended
for pilot’s preparation especially for training flight procedures
before flight, during and after the flight. The lab is under the
auspices of a specialist in automated aircraft control. Our
flight tests have been allowed only with good will of Dr.
Rashid Ali. Based on his expert advice a Cockpit Simula-
tor Cessna 152 was selected for our testing, see image 1.

The flight simulator Cessna 152 consists of a Cessna 152
aircraft fuselage with two seats for crew. This fuselage is
anchored to a static base fixed to the floor. The flight simu-
lation was done by three projectors, projecting images onto a
parabolic wall. Based on the research needs software X-Plane
9 from Laminar Research Company was used. The main ad-
vantage of this software is its precise and detailed simulation
of flight physics for all individual aircrafts. The simulator as
a whole is controlled by a PC - also called an Instructor Sta-
tion. An instructor sitting at this station can change any flight
parameters during the flight simulation. All control elements,
flight instruments and control stick inside the cockpit are con-
nected to the instructor station. The pilot can fully focus on
flying the plane while the instructor can see all the real time
parameters on his monitor.

4.2 Measurement Methodology of the Pilot
Response

The tested pilots were around the age of 23 and all holding
Commercial Pilot Licenses (CPL). They were American uni-
versity students on an exchange program at Hatfield, studying
their final year of pilot studies. They all had several hours of
flight experience on the Cessna 152 and Cessna 172 aircrafts.
All tests were conducted in one day.

As the earlier created algorithm for transfer function pa-
rameter identification was made to process the input signal
as a unit step function, the authors of this paper chose a unit
step function (from a constant flight level) as an input signal.
The test was conducted as follows. After an initial induction
and simulator training the pilot was explained the test proce-
dure and his task. The pilot’s task was to take the plane into
a straight horizontal flight. The instructor suddenly changed
the aircraft altitude by 100 feet. In real situations such a de-
crease or increase in altitude can be caused by strong weather
conditions or turbulences. The pilot’s task was to put the air-
craft back to the original altitude as fast as possible and stay
there. He could do this by using only the aircraft elevator con-
trols. The engine thrust was constant. The test was conducted
with the same pilot several times in the same manner. Also
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Figure 3 Graphical User Interface (System Identification Toolbox).

Figure 4 Graphic environment for choosing the shape of transfer function.
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Image 1. Cessna 152 Cockpit Simulator (University of Hertfordshire)

the other pilots were tested in the same manner and under the
same conditions. All of the data was recorded and stored in
the instructor station.

4.3 Factors Affecting the Measurement

Some limiting factors, occurring during testing, affected the
measured results. Firstly, in real situation the pilot senses any
aircraft change by his senses organs. This cannot be ensured
when using a simulator fixed to the floor. The tested pilots only
sensed the altitude change visually by watching the altimeter
in the cockpit and by expecting a sudden change. This fact
largely influenced (increased) the time constant of the pilot
transport delay between sensory perception of the change and
a brain response.

After result evaluation and consultation with the pilots about
the flight process the pilots talked about greater control sen-
sitivity of the simulator compared to a real aircraft. Another
factor lowering the realistic feel of the flight was a small ob-
servation angle as seen in image 1. Due to the distance and
curvature of the screen used for image projecting the pilots
didn’t have 100% the same feeling as they would in a real
aircraft cockpit.

5. DISCUSSION OF THE OBTAINED RE-
SULTS

5.1 Input Data – Unit Step Function, Output
Data – Flight Altitude

The measurements from the simulator were analysed using an
algorithm for experimental identification of transfer function
parameters. The authors have already created and tested such
an algorithm. However, this was the first time realistically
measured data from a simulator was applied. Four pilots were
tested and each of them had to deal with four to six different

changes of a flight altitude. The two cases below are the two
best pilot’s manoeuvres, one going back up to the original
altitude and one going back down to the original altitude. The
last case demonstrates a badly conducted manoeuvre and the
imperfection of the identification algorithm.

The following figure 5, 6, and 7 show the waveforms of
pilot response to 100 feet large step input. Response also
in feet, on the Y axis represents the altitude change which
is obtained from the pilot reaction to step input. Figure 5
shows an almost perfect pilot manoeuvre when returning to
the original altitude. This was the pilot’s fourth trial which
proves that the more trials the better the pilot gets. The pilot
was able to recover the original altitude in 14 seconds only
by using an elevator control. Undoubtedly, the time in which
the pilot is able to recover the original altitude also depends
on the type of aircraft. The pilot’s response is copying the
graph of PID regulator to which the pilot can be compared.
Taking in account a standard deviation, the pilot’s response
chart is almost perfect. To a person’s naked eye, there is
almost no difference between the pilot response curve and the
curve created by the mathematical model for identification of
transfer function parameters.

Figure 6 shows the best pilot’s manoeuvre when descending
to the original altitude. This result is absolutely unique. In the
other tests none of the other pilots matched even slightly such
a response curve. The identification algorithm approximated
the pilot’s response to the unit step function reasonably well.
In table 1 important identification algorithm parameters are
shown after several hundreds of iterations and also the pilot
behaviour time constants are shown, i.e. their product and
their sum.

In figure 7 there is clear evidence of the pilot’s effort to
come back to the original altitude. In this case the altitude
recovery took longer and two aircraft oscillations occurred.
Similar aircraft oscillations were found at least once for each
pilot in their attempt to quickly descend back to the origi-
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Figure 5 Pilot’s response to a unit step function – ascent to the original altitude.

Figure 6 Pilot’s response to a unit step function – descent to the original altitude.

nal altitude. The reason is that when descending the speed is
naturally increasing and therefore the recovery manoeuvre is
more difficult and the controls are more sensitive. It is also

important to note that applying a 2nd order transfer function
for this case of pilot response was inadequate. All the simula-
tion parameters and the pilot time constants from this analysis
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Table 1 Parameters of the identified transfer functions – parameters corre-
sponds with (1) and (3).

Figure K τ T3 = a1 T1T2 = b2 T1+T2 = b1

5. 1.12 1.1 0.28 3.46 1.32
6. 0.97 1.4 −0.78 2.72 1.60
7. 1.20 0.8 −1.58 4.11 5.30

were disproportionally higher than those in the two cases men-
tioned above. An improvement could be reached by applying
a higher order transfer function, but those results would not
be comparable with the other measured results.

All the conducted tests show fairly higher time delays than
assumed in theory [6]. That is caused by a wide range of fac-
tors affecting both the method of testing and assessment and
the identification algorithm itself. There are two main reasons
for these higher delays. Firstly, that the pilot was detecting the
altitude change only visually. Secondly, the pilots were not
informed when the altitude would suddenly drop or increase
by the 100 feet and thus taking longer to analyze the situation
and react appropriately. The authors also discovered, from the
identified data, that aircraft dynamics also play an important
role in getting a higher time delay. It is clear from the mea-
sured control stick responses that pilots started the returning
maneuver about 0.2-0.3 sec earlier than the plane started to
ascent or descent. The last but not least factor affecting the
time delay is the sampling frequency set at 0.1 sec disallowing
more accurate time delay analyses.

5.2 Input Data – Flight Altitude, Output
Data – Control Yoke Deviation in Lon-
gitudinal Direction

In the past, the authors conducted many simulations and tests
using human behaviour time constants taken from available lit-
erature. A built-in toolbox (System Identification Toolbox™)
in the MATLAB®simulation tool was used to calculate the
transfer function model parameters.

A second method for transfer function parameter calcula-
tion utilised the above created algorithm. This algorithm was
used previously to identify pilot behaviour model parameters,
however, only theoretical time constants [4, 7, 11] were used
in these calculations. In this study the focus was on verifica-
tion of algorithm credibility followed by an implementation
of the measured data into this algorithm. The input and out-
put data were identical to data from the System Identification
Toolbox. A sampling frequency of 0.01 seconds was used
for both simulations. There were 1648 input data samples
and 1648 output data samples available, with a correspond-
ing simulation time of 16.47 sec. This is the time when the
transition-compensation movement finished.

Figure 8 shows the input and output time flows and also the
final curve that was calculated by the identification algorithm
after 1201 iterations. The algorithm is, up to a certain degree,
able to calculate the transfer function of a dynamic system,
based on input and output data. It uses the function fminsearch
from the MATLAB®program library.

The solid-line curve shows the time flow of the altitude
change. To simplify the illustration and the computing oper-

Table 2 Parameters of the identified transfer functions - parameters corre-
sponds with (1) and (3).

Figure K τ T3 = a1 T1T2 = b2 T1+T2 = b1

8. −1.094 0.690 0.204 0.0212 0.366
9. −1.070 0.683 0.350 0.0162 0.308

ations the graph was scaled down 100times. The instructor
unexpectedly lowered the flight altitude by 100 feet within
two seconds and the pilot responded as fast and as accurately
as he could by ascending back to the original flight altitude. It
was clear from the graph that the pilot’s response was similar
to a single-overshoot PID controller.

The dash-dotted-line curve, in the anti-phase of the solid-
line curve, shows the control yoke movement in the longi-
tudinal direction. When the pilot realised the sudden alti-
tude change, he moved the control yoke to the maximum and
brought the aircraft back to its original flight altitude. The
pilot started to fine-balance the flight relatively late and due
to aircraft momentum one oscillation occurred. After this the
pilot was able to stabilise the aircraft to the original flight
altitude.

The graph clearly shows the first time constant of the pilot –
the Transport Delay, without any calculations. The transport
delay is relatively high as there are many factors disturbing
and affecting the testing procedure and its evaluation. The
time delay is mainly caused by the fact that the pilot only
registered the altitude change visually on the altimeter in the
cockpit. The pilots expected a sudden altitude change, but
they were not informed whether it would be an increase or
a decrease by 100 feet and thus it took some time for the
pilot to analyse the situation and respond correctly. In other
situations, for example oscillation damping by the pilot, such
a time delay would be unacceptable. This time delay value is
too close to the critical value (0.9 sec) and when exceeded a
destabilisation of the ‘pilot-aircraft-automated flight control’
closed loop occurs [16]. The pilot could generate a so called,
pilot induced oscillation (PIO) dangerous for both flight safety
and the airframe itself.

The final calculated curve is shown as the dashed line. It is
clear, that the algorithm is able to follow the trend of the curve
until the pilot pulls suddenly on the control yoke and holds it
to the maximum. At this point the elevator control movement
becomes limited, i.e. non-linear. The algorithm can’t handle
non-linear movement and nor can it come back and follow the
curve trend. The algorithm only partially follows the control
yoke trend curve. The parameters of the calculated transfer
function are shown in table 2

Figure 9 shows the final curve acquired from input and out-
put data. As mentioned earlier in this article, the identical
input and output data were entered into the System Identifi-
cation Toolbox so that both final transfer functions and both
methods of simulation could be compared. The trend of the
final curve is almost identical to the identification algorithm
trend. The non-linearity of the sudden pull on the control yoke
and reaching the top-limit position is shown in the graph and
the System Identification Toolbox also can’t handle this non-
linearity. The final values of the transfer function are shown
in table 2
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Figure 7 Pilot’s response to a unit step function – descent to the original altitude (oscillation).

Figure 8 Identification of Transfer Function Coefficients (Identification Algorithm).

Figure 9 Measured and simulated model output (System Identification Toolbox™).
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6. CONCLUSION

The authors conducted many tests on the Cessna 152 flight
simulator and other simulators including computer simula-
tions of human behaviour whilst flying an aircraft. The data
from these tests were then used for transfer function parame-
ter identifications of a pilot behaviour model. As the amount
of data was enormous, only the most important data and the
most interesting pilot responses were presented in this article.
By comparing the measured output values of the time con-
stants with the theoretical limits of the time constants, it can
be said that it is possible to simulate a real pilot’s behaviour
quite accurately.

Currently, the authors are preparing an aircraft simulator
experimental site for measuring human/pilot behaviour whilst
flying an aircraft in different modes and in different types of
aircraft.

There is one important factor in professional pilot training
and that is the amount of flight hours (practical flying expe-
rience). The test results clearly showed that the pilots were
getting better and better with each test, shortening the time in
which they brought the aircraft back into its horizontal alti-
tude. This negative factor will be in the future compensated
for by having longer pilot training courses. Practical flying
experience negatively influences both the predictive time con-
stant of pilots, depending on their experience, and pilot’s lag
time constant, connected with learned manoeuvre stereotypes.

Determination of the boundaries of transfer function pa-
rameters allows the application of new trends in pilot train-
ing. From the long term viewpoint for example the change and
modification of pilot training or pilot regimen and proper mo-
tivation can help minimize negative influence which effecting
pilot activities and reactions. Knowledge of the parameters of
pilot behaviour model can be also used in the early stage of
automatic control systems design. In some case may happen
that the pilot intervention is in the same phase as automatic
control systems. Subsequently so-called pilot induced oscil-
lation will have negatively effect on the flight safety. If we
will know the exact values of the parameters the software or
hardware can prevent this situation. Predictions of human be-
haviour during aircraft flight control are nowadays a necessary
condition for a successful reduction in the human error factor
in aviation.
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