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Abstract 

Over the past two decades performance flight testing of full scale aircraft has transferred 

some of the testing workload to simulation based systems.  Flight testing full scale aircraft in 

the real world environment has always been expensive, especially now with the rise in 

aviation fuel costs. Additionally, new emerging technologies require extensive testing and 

doing so in the full scale environment is cost prohibitive.  A cheaper alternative is to test 

systems in a simulation based environment.  Not only can aircraft be simulated via a 

computer, but all the aircrafts systems can be modeled in the simulation.  Furthermore, most 

of the aircraft systems, such as avionics and sensors, can be directly built into the simulation 

just as they would be on the actual aircraft.  The purpose of this report is to review the 

progression of flight simulation technology, flight testing procedures, and conduct a series of 

flight tests to compare the data between the actual aircraft in flight with two simulators 

readily available to the general public.  The two simulators considered are X-Plane 9 by 

Laminar Research and Flight Simulator X from Microsoft. Each simulator uses a different 

approach to creating the simulated environment.  X-Plane uses an engineering process called 

“Blade Element Theory”, while Microsoft Flight Simulator X uses the more traditional 

stability derivative method.  In order to compare the accuracy of each of these simulations, 

three flight tests were conducted in each simulator and in the actual aircraft.  A Cessna 

172SP was the aircraft used in each of the tests.  The three tests conducted were flight path 

stability, stall, and steady turns.  Comparing the results, the simulations produced data very 

similar to that of the actual tests; however, the data did not suggest that either simulation 

was more accurate than the other.  The only distinction between the two simulators that 

could be made was evident in their user interfaces and ease of operation.  Overall, the results 

obtained in this paper illustrate the effectiveness of the modern flight simulator as an 

effective testing and design tool.       

Acknowledgements 

First, I would like to thank Dr. William Durgin for his guidance during the course of the project.  Additionally, the 

flight tests in the actual aircraft could not have taken place if it were not for the efforts of Jeannine and Gary Sparks 

at the Pacific Aerocademy.  The test aircraft, N172CY, was always in top condition and ready to complete the flight 

tests without any maintenance related issues. 

 



 

American Institute of Aeronautics and Astronautics 
 

 

3 

Table of Contents 

Abstract.......................................................................................................................................................................... 2 
Acknowledgements ....................................................................................................................................................... 2 
Table of Contents........................................................................................................................................................... 3 
List of Figures ................................................................................................................................................................ 3 
List of Tables ................................................................................................................................................................. 3 
I. Introduction ........................................................................................................................................................... 4 
II. Literature Review ................................................................................................................................................. 5 

A. NASA HiMAT Vehicle Simulation.................................................................................................................. 5 
B. Integration of Open Source Flight Simulation Software in Testing UAVs ...................................................... 6 

III. Methodology and Results ................................................................................................................................. 7 
A. Safety ................................................................................................................................................................ 8 
B. Data Acquisition ............................................................................................................................................... 9 
C. Test Procedure – Stalls ................................................................................................................................... 10 
D. Test Procedure – Steady Turn ........................................................................................................................ 11 
E. Test Procedure – Flight Path Stability ............................................................................................................ 12 
F. Results – Stall ................................................................................................................................................. 12 
G. Results – Steady Turn ..................................................................................................................................... 13 
H. Results – Flight Path Stability ........................................................................................................................ 14 
I. Flight Simulator GPS Data ............................................................................................................................. 15 

IV. Conclusion ...................................................................................................................................................... 16 
V. Appendix ............................................................................................................................................................. 17 
References ................................................................................................................................................................... 18 
 

 

List of Figures 

Figure 1. Lockheed Martin's commercial flight simulator: Prepar3D ........................................................................... 4 
Figure 2. The HiMAT three-view reveals its special characteristics. ............................................................................ 5 
Figure 3. The Basic simulation was compact and simple. ............................................................................................. 6 
Figure 4. FlightGear/JSBSim and MATLAB/Simulink were used together to model the UAV's flight model and 

autopilot respectively
6
. .................................................................................................................................................. 6 

Figure 5. X-Plane performs multiple calculations per second to determine how the aircraft actually flies. .................. 7 
Figure 6. FSX uses stability derivatives to predict how the aircraft should fly. ............................................................ 7 
Figure 7.  MIL-STD-882B Hazard matrix helps prevent accidents. .............................................................................. 8 
Figure 8.  The Go Pro

®
 HD video camera was invaluable in acquiring the required test data. ..................................... 9 

Figure 9. FS Recorder allows for a multitude of aircraft data to be recorded. ............................................................... 9 
Figure 10. X-Plane boasts an extensive data recording capability. .............................................................................. 10 
Figure 11. FSX and X-Plane have the ability to customize the weight and balance of the aircraft. ............................ 11 
Figure 12. Power on stall test results ........................................................................................................................... 12 
Figure 13. Power off stall test results .......................................................................................................................... 13 
Figure 14. Steady turn test results ................................................................................................................................ 14 
Figure 15. Flight path stability test with flaps deployed .............................................................................................. 15 
Figure 16. Flight path stability test without flaps ........................................................................................................ 15 
Figure 17. X-Plane GPS track data .............................................................................................................................. 17 
Figure 18. FSX GPS track data .................................................................................................................................... 17 

 

List of Tables 

Table 1. Flight testing has some critical hazards. .......................................................................................................... 8 
Table 2. FSX data output sample ................................................................................................................................. 18 
Table 3. X-Plane data output sample ........................................................................................................................... 18 

 

file:///C:/Users/David/Dropbox/Senior%20Project/senior_project.doc%23_Toc295077833
file:///C:/Users/David/Dropbox/Senior%20Project/senior_project.doc%23_Toc295077834
file:///C:/Users/David/Dropbox/Senior%20Project/senior_project.doc%23_Toc295077835
file:///C:/Users/David/Dropbox/Senior%20Project/senior_project.doc%23_Toc295077836
file:///C:/Users/David/Dropbox/Senior%20Project/senior_project.doc%23_Toc295077836
file:///C:/Users/David/Dropbox/Senior%20Project/senior_project.doc%23_Toc295077837
file:///C:/Users/David/Dropbox/Senior%20Project/senior_project.doc%23_Toc295077838
file:///C:/Users/David/Dropbox/Senior%20Project/senior_project.doc%23_Toc295077839
file:///C:/Users/David/Dropbox/Senior%20Project/senior_project.doc%23_Toc295077840
file:///C:/Users/David/Dropbox/Senior%20Project/senior_project.doc%23_Toc295077841
file:///C:/Users/David/Dropbox/Senior%20Project/senior_project.doc%23_Toc295077842
file:///C:/Users/David/Dropbox/Senior%20Project/senior_project.doc%23_Toc295077843
file:///C:/Users/David/Dropbox/Senior%20Project/senior_project.doc%23_Toc295077844
file:///C:/Users/David/Dropbox/Senior%20Project/senior_project.doc%23_Toc295077845
file:///C:/Users/David/Dropbox/Senior%20Project/senior_project.doc%23_Toc295077846
file:///C:/Users/David/Dropbox/Senior%20Project/senior_project.doc%23_Toc295077847
file:///C:/Users/David/Dropbox/Senior%20Project/senior_project.doc%23_Toc295077848
file:///C:/Users/David/Dropbox/Senior%20Project/senior_project.doc%23_Toc295077849
file:///C:/Users/David/Dropbox/Senior%20Project/senior_project.doc%23_Toc295077850
file:///C:/Users/David/Dropbox/Senior%20Project/senior_project.doc%23_Toc295078177
file:///C:/Users/David/Dropbox/Senior%20Project/senior_project.doc%23_Toc295078178
file:///C:/Users/David/Dropbox/Senior%20Project/senior_project.doc%23_Toc295078179


 

American Institute of Aeronautics and Astronautics 
 

 

4 

 
Figure 1. Lockheed Martin's commercial flight simulator: Prepar3D 

 

I. Introduction 

IRCRAFT flight testing is one of the most costly but essential steps in the design and manufacturing process.  

Before any aircraft, whether it be for the military or civilian markets, is ready for deployment, they must 

undergo a rigorous series of flight tests.  Furthermore, flight testing programs are developed with the goal of 

revealing design flaws and providing necessary data for certification
1
. Before the age of computers, all flight tests 

were conducted on the prototype aircraft; consequently, design flaws which led to aircraft damage proved to be 

extremely expensive and would stop the design process until the prototype could be fixed and redesigned.  The 

modern computer and the development of simulation based flight testing changed the design process completely. 

 

 Once computer technology caught up with the aerospace industry, the potential for aircraft design and testing 

became limitless.  Aircraft developers were enabled to design, model, and test their aircraft in a safe and cost 

effective manner.  Instead of having to repair a damaged airframe after a mishap in preliminary testing, the designer 

could simply make the design change in the computer model and re-fly the test.  Additionally, simulation based 

testing helped reduce the cost of the testing process because simulators don’t require fuel like their real world 

counterparts.  The cost of fuel is one of the biggest limiting factors to flight testing.  When a test program is 

developed, a specific amount of tests are planned in order to meet all the testing requirements and minimize the cost 

of the program.  Because many designers outsource the flight testing process to a 3
rd

 party, the testing agency incurs 

all additional expenses in the event a test requires repeating.  Moreover, it would be more cost effective to test the 

aircraft model in a simulated environment first to reveal any design flaws beforehand. 

 

With the ever rising price of oil, the use of simulation based flight testing is becoming more widely used as a 

primary means for testing.  Both civilian and military programs have contributed to the development of the 

sophisticated simulators seen today.  Most notably, Microsoft’s flight simulation software, Microsoft ESP, was 

purchased by Lockheed Martin which 

used the technology to create a 

versatile simulation tool for 

preliminary testing.  Lockheed’s 

resulting software is called Prepar3D 

and has been packaged to sell to the 

commercial market.  Figure 1 shows a 

rendering of the visual environment 

which Prepar3D creates
3
.    A result 

from the development of high-tech 

simulators was the creation of medium 

fidelity consumer applications.  The 

simulations that were developed for the 

consumer allowed the general public to 

experience the same simulation 

technologies used in commercial 

applications for recreational and 

educational purposes.  The widespread 

use of the cheap, home-based flight 

simulators spawned a large community 

of flight simulator enthusiasts.  

Furthermore, the continued development of the home-based simulator has resulted in cheap and accurate simulation 

tools which have the potential to be used with a multitude of applications. 

 

 The following paper explores the flight testing capabilities of home-based flight simulation models and 

environments.  Primarily, the home-based simulator is designed for entertainment purposes; however, the 

educational applications are limitless.  In order to demonstrate the capabilities of the home-based simulator, baseline 

tests were first conducted in an actual Cessna 172SP in the San Luis Obispo County area.  The tests were then 

repeated in two different simulations and the data from all three tests were compared.  Similar data sets would reveal 

the usefulness of the home-based simulators for educational and practical applications.  In addition to investigating 

A 
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the usefulness of the home-based simulator, the overall project provided a great opportunity to learn flight testing 

protocols and flying techniques as well as an opportunity to develop data reduction scripts in MATLAB.    

    

II. Literature Review 

As the requirements for aerospace vehicles have become more advanced and exotic, the need for accurate, high-

tech simulation software has increased accordingly.  The new advanced aerospace systems are expensive to test full 

scale, thus developers must rely on scaled tests and simulations for preliminary testing.  Finding design flaws at the 

early stages of design is vital in producing a product quickly and cost effectively.   

In addition to being an invaluable tool to larger aerospace applications, less sophisticated simulation 

environments have extremely important applications for smaller, private designs and education opportunities.  Home 

build aircraft designers can save themselves hours of troubleshooting and development costs by using cheap but 

effective simulations for their preliminary testing needs.   

The following literature reviews will discuss simulation software which has been used for advanced aerospace 

concepts, as well as software that is currently being used presently.  The first paper discusses the role of simulation 

in the development and flight testing of Highly Maneuverable Aircraft Technology (HiMAT) written by NASA 

engineers. Figure 2 illustrates the HiMAT concept via a three view drawing.  Second, a paper was reviewed which 

discussed the use of open source, or free, software to simulate the testing of an autonomous unmanned aerial vehicle 

(UAV).   

A. NASA HiMAT Vehicle Simulation 

Beginning in the early 1980’s, 

NASA began realizing the potential for 

the use of high fidelity simulation 

software.  Full scale tests had become 

extremely expensive and in some cases 

impossible to perform.  When studying 

the HiMAT vehicle concept, NASA 

engineers showed that flight simulation 

was “the key to flight qualification of 

the HiMAT vehicle.”
1
  The HiMAT 

vehicle concept was designed to 

demonstrate the maneuvering 

capabilities of an aircraft with reduced 

static stability and digital fly-by-wire 

controls.  Because the HiMAT program 

planned for a “limited amount of 

flights” and had an “unstable aircraft configuration”, simulations were “essential to the HiMAT program.”  During 

the course of the HiMAT program many different simulation modules were developed.  Some of the key 

components to note are the aerodynamics, primary and secondary control, propulsion, and uplink and downlink 

models.  Each module closely simulates their actual real world counterparts and allowed the designers the chance to 

correct issues before actual tests were conducted.  For instance, when simulating the downlink system, the designers 

were able to solve issues while still in the simulation. 

Four different simulation versions were developed for the HiMAT vehicle: the Basic, Verification, computation 

and simulation of HiMAT (CASH), and Iron Bird.  The Basic simulation was the most widely used because it 

allowed for “relative ease of program modification” and the use of the “fewest number of computers”.  Ultimately, 

the basic simulation “provided the principle tool for the final design”. Figure 3 shows the actual Basic simulation 

block diagram used in the HiMAT program. 

The next evolution to the simulation environment was the Verification simulator, which had the primary purpose 

of verifying the flight code and making sure the systems perform exactly as specified.  Because most of the codes 

used in the simulation are those actually used on the aircraft, the must be verified in the simulator before being 

implanted practically. 

The third type of simulation performed was the CASH simulation.  CASH simulations were used primarily for 

system validation, flight planning, and pilot training and proved to be the best tool for testing flight software.  Using 

 
Figure 2. The HiMAT three-view reveals its special characteristics. 
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Figure 4. FlightGear/JSBSim and MATLAB/Simulink were 

used together to model the UAV's flight model and autopilot 

respectively
6
. 

 

ten different computers, the CASH system was highly complex yet more cost effective than using the actual HiMAT 

vehicle.   

Last, the Iron Bird simulation systems were conducted.  Iron bird simulations use the actual vehicle and were 

developed to perform full-system validations, limit-cycle tests, and failure mode and effects analysis.  The actual 

data uplink and downlink systems were used to 

connect the vehicle to the simulation computers.  

Simulated sensor signals were sent to the actual 

vehicle which responded as if it were actually in 

flight.  The tests proved to be invaluable in 

discovering critical time delays between the 

simulation signal implementation and the vehicle 

response.  Those delays were important because 

the same delays would be evident when the actual 

vehicle was tested remotely in an actual 

environment.  Because the Iron Bird system was 

expensive to operate, it was not extensively used 

for pilot training and flight planning. 

Moreover, all four simulation systems were 

highly effective in the design, development, and 

testing of the HiMAT test vehicle. 

B. Integration of Open Source Flight Simulation Software in Testing UAVs 

As the use of small, unmanned aerial vehicles (UAVs) becomes more prevalent in military and commercial 

markets, the demand for low cost testing applications also increases.  Building a dedicated and fully custom 

simulation model for a small UAV application is not only overkill but is also cost prohibitive
6
.  Small UAVs are 

designed using simple flight models and a complicated simulation is not needed; thus, open-source (freeware) 

simulators and flight dynamics models are perfectly capable providing the correct amount of fidelity and cost 

effectiveness. 

FlightGear, an open-source simulator, and JSBSim, an open-source flight dynamics model, are applications with 

unlimited possibilities.  For instance, the Institute for Scientific Research (ISR), Inc. used FlightGear along with 

JSBSim to build a simulation environment for the testing of an Autonomous UAV (AUAV).  Additionally 

MATLAB/Simulink was used in initial development and testing to simulate the AUAV’s autopilot. Figure 4 shows 

the FlightGear simulation environment and the MATLAB/Simulink autopilot control outputs. 

The tests conducted by the ISR 

occurred in three stages.  The first stage, 

or the development stage, used a 

MATLAB/Simulink bridge consisting of 

an S-Function that receives inputs from 

the autopilot and then transmits outputs to 

FlightGear.  The S-Function bridge acts as 

the flight dynamics model and outputs 

values such as altitude, airspeed, pitch 

rate...etc
6
.  The stage 1 test environment 

was a useful development tool; however, 

the development model proved only 

useful for short duration testing and did 

not provide a way to alter the desired 

testing conditions mid flight. 

Stage 2, or regression testing, 

integrated the previously used 

MATLAB/Simulink autopilot with a C++ 

bridge that would pass data between 

MATLAB/Simulink and FlightGear. The 

regression test bridge was also linked to a 

text file which could set the desired test 

conditions at anytime during the test.  

 
Figure 3. The Basic simulation was compact and simple. 
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Figure 5. X-Plane performs multiple calculations per second to determine 

how the aircraft actually flies. 

 

 
Figure 6. FSX uses stability derivatives to predict how the aircraft 

should fly. 

 

Additionally, scripts were used to drive the regression tests which then tested each capability of the autopilot. 

The final stage, stage 3, integrated the actual autopilot hardware into the control loop.  More specifically, instead 

of using a MATLAB/Simulink model of the automated control laws, the actual control hardware designed for the 

test vehicle was integrated into the simulation loop.  Thus, every aspect, except the aircraft sensor board, was able to 

be thoroughly tested before spending the money and resources to test the aircraft in the field.  Ultimately, the ISR 

was able to use readily available flight simulation software to limit their costs and effectively tests their vehicle and 

control system. 

III. Methodology and Results 

The following section describes safety considerations, testing procedure and illustrates the results of three flight 

tests.  Each test was conducted in three different environments: the actual aircraft, Laminar Research’s X-Plane 

environment, and in Microsoft’s Flight Simulator X. The tests conducted in the real world environment were done 

so in a Cessna 172SP over the San Luis Obispo County area.  Three tests were conducted, stall, steady turns, and 

flight path stability, and the data collected was used as baseline data points to compare with the results conducted in 

the two simulation environments. The objective of the data comparison was to determine which of the two 

simulation models was the most accurate.  Additionally, the ease of use and cost of both the simulation tools were 

also compared. 

Laminar Research’s X-Plane is considered to be the most realistic simulator available to the public.  Unlike most 

simulation engines, X-Plane does not rely on stability derivatives to define how an aircraft should fly; however, X-

Plane uses actual flow calculations many times per second to figure out how the given aircraft flies in the simulated 

environment.  Figure 5 shows a screenshot of how the aircraft interacts with the simulated environment in X-Plane.  

The engineering process used to 

calculate the simulated flow field 

is Blade Element Theory.  Upon 

opening the X-Plane engine, the 

aircraft considered for flight has 

its surfaces divided up into many 

different elements.  Then once 

the aircraft is in flight, X-Plane 

uses the finite elements created 

based upon the aircraft surfaces 

to determine the velocities acting 

at each element.  Additionally, 

the downwash, prop wash and 

induced angle of attack are also 

calculated for each element.  

Force coefficient data are corrected for finite surface effects and then the forces and moments are summed on each 

element at a rate of over 15 times a second
4
. 

On the other side of the fence lies Microsoft’s Flight Simulator X (FSX) which uses stability derivative and look 

up stables to predict how the aircraft in question might fly.  Figure 6 shows the same Cessna model flying in the 

FSX environment. Aircraft stability coefficients are based upon the aircrafts geometry and each components 

interaction with each other during flight.  Those coefficients can be estimated using equations or found using 

empirical sources such as the 

United States Airforce’s (USAF) 

Digital DATCOM.  Once the 

coefficients for the aircraft are 

found, they are compiled into a 

single file.  Each one of the 

coefficients is available in that file 

for a number of angles of attack 

and mach numbers. Additionally, 

all aspects of the aircraft’s 

geometry are placed in a separate 

file.  The combination of the 

geometry and the coefficients files 
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Figure 7.  MIL-STD-882B Hazard matrix helps prevent accidents. 

 

Table 1. Flight testing has some critical hazards. 

 Hazard Category 

1 Engine Failure II D 

2 Spin II B 

3 Mid Air Collision I D 

4 Data Acquisition Failure  II C 

5 Stall III B 

 

 

makes up the basic flight model for the aircraft; thus, during flight FSX uses the stability derivatives for the given 

flight conditions to determine the proper aircraft reaction.  Ultimately, an aircraft in FSX can be extremely accurate, 

but only if a sizeable amount of data is known for the aircraft in question
5
. 

  Overall, both flight simulators have the potential to provide useful test data for a given aircraft.  The following 

section investigates three tests previously mentioned and compares the results from both simulators to the data taken 

from the actual aircraft. 

A. Safety 

  The first issue addressed before any flight testing was performed in the actual aircraft was safety.  When the 

flight test practice was born, many test pilots were lost due to a lack of safety standards and regulations.  In order to 

mitigate the risk involved with flight testing aircraft, safety protocols and regulations were implemented.  A fallout 

of the new regulations introduced was the hazard category matrix shown in Figure 7 that come from Military 

Standard 882B (MIL-STD 882B). 

The matrix allows the test engineer 

to identify the hazards associated 

with the respective test.  

Additionally, the severity and the 

frequency of each hazard can be 

identified. 

 Table 1 shows the main 

hazards associated with flight 

testing and their respective 

categories.  The first listed is total 

engine failure.  Loss to the power 

plant of the aircraft leaves the 

aircraft in a critical situation.  Some 

causes to engine failure include lack 

of oil, catastrophic cylinder 

detonation, magneto failure…etc.  

Engine failure is avoided by 

completing all preflight checks and 

ensuring the engine has undergone 

the required maintenance. 

Next, the hazard of aircraft spin 

is labeled as critical and reasonably 

probable.  When conducting low 

speed tests, especially related to stall, the aircraft is susceptible to spin.  Spin occurs when the aircraft is stalled and 

enough yaw is introduced to rotate the plane about the spin axis
2
. Spin can be avoided by keeping the aircraft in 

coordinated flight or “stepping on the ball”.  In the event of a spin the ailerons are moved to their neutral position 

and full opposite rudder is applied. 

Perhaps one of the most dangerous and horrific hazards to pilots is the mid air collision which is a remote yet 

catastrophic failure.  Mid air collisions can occur with a variety of objects and are usually caused by a lack of 

situational awareness (SA) by the pilot and poor flight planning.  Objects other than aircraft, especially birds, can be 

avoided by choosing a testing altitude clear of bird traffic.  Collisions with other aircraft can be avoided by choosing 

a non congested testing location, monitoring the frequencies of nearby approaches and airfields, and performing 90 

degree clearing turns before every maneuver. 

Data acquisition failure is labeled as a critical failure because the flight will have to be flown again thus 

doubling the cost of that particular test.  A test flight may fail to acquire the necessary test data because the 

acquisition device failed or a piece of the equipment was forgotten or misused.  In the case of the tests described in 

the following sections, the data was acquired using a video camera; thus, it was essential to ensure the cameras 

battery was charged and the memory storage device had sufficient space to record all the tests.  

Last, stall is another prevalent hazard to flight test, especially when considering low speed testing.  An aircraft 

by definition can stall at any airspeed and that is the reason why it is such a common hazard.  The cause of stall 

mainly attributes to the angle of attack of the lifting surface reaching the critical angle of attack regardless of 

airspeed.  Stall can be avoided by maintaining an awareness of the aircrafts airspeed and pitch attitudes; however in 

the event of a stall, the wings need to stay level and the turn coordinator centered.  Ultimately, identifying the 
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Figure 8.  The Go Pro

®
 HD video camera was invaluable in 

acquiring the required test data. 

 

 
Figure 9. FS Recorder allows for a multitude of aircraft 

data to be recorded. 

 

hazards associated with each flight test not only increased the safety of the test but also the efficiency of the test as 

well. 

B. Data Acquisition 

Each of the three test environments had their own data acquisition procedure and equipment.  As noted in the 

safety section of the report, the data acquisition equipment needed to be fully functional and the instructions for use 

fully understood.  Ensuring proper data collection ensured the integrity of the data and the time allotted for testing 

was used effectively. 

The test setup for the flight tests performed in the actual aircraft was rather simple.  A robust, aircraft specific, 

data collection unit was not available for use on the aircraft; thus, an HD video camera was used to record the 

instrument panel during flight.  The camera used was a Go Pro
®
 HD Hero which has the ability to record in 1080p 

resolution and is pictured in Figure 8.  Since the 

frame rate acquisition was more important than 

resolution, the 720p resolution at 60 frames per 

second (fps) was used during the tests as 

opposed to a resolution of 1080p at 30 fps. 

Additionally, the mounting system shown in 

Figure 8 was used to attach the camera to the 

left section of the windscreen.  The suction cup 

and tightening pins ensured the camera stayed 

in place during all aspects of the flight and an 

on camera stabilization allowed the camera to 

film the tests without shaking due to cabin 

vibrations.  Overall the Go Pro
®
 HD Hero 

proved to be a vital piece to the success of the 

flight tests. 

The tests conducted in Microsoft’s FSX 

used and open-source program called FS 

Recorder to record the flight data in real time.  

The primary purpose of FS Recorder is to record FSX aircraft data for the use of playing back flights for viewing 

purposes; however, FS Recorder also has to ability to convert the playback files to text files containing valuable 

aircraft data such as GPS coordinates, airspeeds, and altitude.  The data contained in the text file is recorded 4 times 

a second during the course of the test
2
 and is outputted to a file named by the user.  Data acquisition in FSX using 

FS Recorder was initiated by first pausing the simulation and pressing alt on the keyboard to reveal the FSX menu 

on the top of the screen.  Next, the FS Recorder tab was highlighted using the mouse and then the Record option is 

selected.  Figure 9 shows a screenshot of the FS 

Recorder options window where aircraft flight data 

can be selected for recording along with the 

recording interval size.  After the desired settings 

were selected, the simulation was unpaused and the 

test flight was flown to completion.  Once the test 

was completed the simulation was again paused and 

then the alt key was again used to unhide the FSX 

menu.  The FS Recorder tab was highlighted with 

the mouse and then the stop recording option was 

selected.  Once the simulation stopped recording, a 

window opened enabling the recorded data to be 

saved to a specified filename and location.  The 

final procedure in finalizing the raw data from FSX 

was to convert the .frc output file to a text file using 

the FRC Converter tool included with the FS 

Recorder program. A sample output file from FSX 

is available in the Appendix in Table 2. Ultimately, 

FS Recorder and its internal conversion program 

proved to be an effective data gathering tool for the 

tests ran in FSX. 
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Figure 10. X-Plane boasts an extensive data recording capability. 

 

During the final tests conducted in X-Plane, X-Plane’s internal data recording system was used to output the 

required test data.  The data acquisition program is enabled from the main window during flight and X-Plane 

automatically records the selected data 10 times per second. The data is actively written to a generic data file in the 

main X-Plane folder.  Much like in FSX the data recording in X-Plane is enabled from the menu located at the top of 

the simulation window. The menu was accessed by moving the mouse to the top of the simulation window.  Next 

the settings menu was selected and then the data input and output tab was opened.  Figure 10 shows X-Planes 

extensive data output selection window. Once the data required for the flight test is selected on data output selection 

screen, the window is closed and the window returns to the simulation.  X-Plane was then recording data in real time 

and the test was then completed.  After the test was finished the data output selection window was reopened the 

options previously selected were deselected and then the window was returned to the simulation. Table 3 in the 

Appendix shows an example of an output file from X-Plane.  Once the aircraft was set up for the next flight test, the 

recording procedure was completed again for the next test.  Each time a test was finished the flight test data was 

added to the main data file discussed earlier and each test was separated by a new header line in the main file.  Just 

as FS Recorder for FSX, X-Plane’s internal data recording proved invaluable to the data collection during the flight 

tests.    

C. Test Procedure – Stalls 

In addition to identifying the hazards associated with each flight test, detailed procedures for each test were 

written to further ensure the safety and effectiveness of each test.  The first order of business before any of the flight 

tests were conducted in the actual aircraft was to make the go/no go decision based on the weather.  If the weather 

was rendered conditions that were out of the aircrafts or the pilot’s capabilities, the test was moved to a later date. 

On the condition that the weather was acceptable, the test was given a go.   Next, the weather data was recorded 

from the Automatic Terminal Information Service (ATIS) for later use in the simulation based environment and data 

reduction.  The proceeding weather checks were used on all three test days.  In addition to the weather data, fuel 

weights were also recorded to ensure the tests in the simulators used the correct weight and balance. 

Once the standard preflight inspections and the aircraft and weather data were recorded, the aircraft was ready to 

begin the first test.  After departing San Luis Obispo Regional Airport (KSBP), the aircraft was turned toward the 

coast and a steady climb to 3000 feet MSL was initiated.  The first test that was completed was the power on stall 
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Figure 11. FSX and X-Plane have the ability to customize the weight and balance of the aircraft. 

 

test.  First the aircraft was trimmed for steady level flight at 3000 feet and after stabilization the video camera was 

turned to record.  Then, reducing the RPM to 1700, the aircraft was slowed to approximately 70 KIAS.  After 

reaching 70 KIAS, full power was applied as well as strong back pressure on the flight yoke.  As the aircraft 

climbed, elevator was used to slow the aircraft and an approximate rate of 1 knot per second.  A deceleration rate of 

1 knot per second helped keep the aircraft controllable and highlighted the break once stall occurred.  Additionally, 

right rudder was applied to keep the aircraft coordinated throughout the test.  Once the aircraft stalled, the nose was 

pushed down to regain the kinetic energy lost during the maneuver
2
.  For the sake of safety, the video camera was 

not dealt with (turned off) until the aircraft showed a safe airspeed and attitude.  The test was then repeated for the 

power on situation using the procedure just mentioned. 

Next, the aircraft underwent power off stall testing.  First, the aircraft was trimmed again at or around 3000 feet 

for steady level flight and the camera was switched to record.  The rpm setting was then reduced to 1500 and when 

appropriate 10, then 20, and finally 30 degrees of flap deflection were added to stabilize the aircraft in “slow flight” 

or the landing configuration.  Once the aircraft was stable in slow flight, elevator deflections along with the 

coordinating right rudder were used to slow the aircraft to stall.  After the aircraft experienced the stall, the nose was 

pushed down, full power was applied, and the flaps were raised to 20 degrees.  Then, once the aircraft settled into a 

safe condition the camera was turned off and the aircraft was set up for the second power off test. 

During the testing conducted in the simulators, the same procedure as noted above was used for both the power 

on and power off tests; however, the procedure for data acquisition was based on the simulator being used as 

described in the previous section.  Additionally, the simulated aircraft was also set up with the same weight and 

balance as the test aircraft.  Figure 11 shows the weight and balance interface available in FSX and X-Plane from the 

left to right respectively. Similar menus were also available to set the weather conditions specific to that of the day 

when the test was conducted in the actual aircraft, including wind, visibility, and barometric pressure.       

D. Test Procedure – Steady Turn 

Just as with the Stall test from the previous section, the first steps of the steady turn tests was to make the go/no 

go decision, properly preflight the aircraft, and record the necessary fuel and weather data.  Once in the air, the 

aircraft was flown again to an altitude of 3000 feet MSL and to an area free of traffic.  The steady turn test proved to 

have the simplest procedure out of the three tests.  First the throttle was set to roughly 2100 rpm and the aircraft was 

then allowed to accelerate and stabilize, while the aircraft’s altitude was held constant.  After the airspeed stabilized, 

the control force was trimmed off the yoke using the trim wheel. Then, once the aircraft was in steady, level, 

trimmed flight, the camera was switched to record and the aircraft was banked to an angle of 30 degrees.  During the 

turn bank angle and altitude were held constant.  Since the aircraft was operating on the front side of the power 

curve, the velocity should stabilize at a lower value than just before the start of the turn.  The maneuver was flown 

until the airspeed was stabilized at the constant bank angle, altitude and load factor.  Then the aircraft was rolled 

wings level and the camera was set to standby.  The above procedure was then completed again for engine RPMs of 

2200 and 2300. 
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Figure 12. Power on stall test results 

 

E. Test Procedure – Flight Path Stability 

The final test conducted involved investigating the flight path stability of the aircraft, more specifically the 

approach stability.  An aircraft is stable on approach if the pitch for speed and throttle for rate of climb relationship 

remains intact.  The first steps, as in the previous tests, were to check the weather for safe flying conditions, record 

the fuel weights and properly preflight the aircraft.  Next, the aircraft was flown again to an altitude of 3000 feet and 

trimmed for steady level flight.  Two variations of the test were performed, the first was conducted in the clean 

configuration and the second used 20 degrees of flaps.  Other than the aircraft configuration, the difference in the 

variations was the approach speed and rpm setting.  The clean configuration approach speed was flown at 1500 

RPM and 75 KIAS and the flap down test was conducted at 1700 RPM and 70 KIAS.  Once the aircraft was 

established at either approach condition, the camera was switched to record and then the airspeed was decreased 

using pitch control only 5 KIAS.  The test concluded when the aircraft descended through 2500 feet MSL and the 

camera was switched to standby. Then the aircraft was returned to its initial condition of steady level flight at 3000 

feet MSL.  After returning to the initial flight condition, the aircraft was again set up for the approach speed 

associated with the clean or dirty configuration. Next, the camera was turned again to record and the aircraft was 

pitched to increase its approach speed by 5 KIAS. Again, the test concluded when passing through 2500 feet MSL 

and the camera was switched to standby
2
.     

F. Results – Stall 

After the procedure for each test was fully understood, the tests were then performed.  The first tests conducted 

involved stalling the aircraft in the power on and power off configurations.  Using the procedure noted in section 

IIIC of the report, the stall tests were completed in all three environments.  Figure 12 shows the results of the power 

on stall test. The chart in the left portion of the figure illustrates the change in altitude during the test.  It is important 

to note that both charts in the figure were plotted against a normalized axis to better compare the three different data 

sets.  The 0 point on the charts represents the test start and 1 represents the test end.  All the plots included in the 

remainder of the report are configured in the same manner. 

The first interesting point to note is the decrease in altitude during the beginning of the test.  A loss in altitude at 

that particular time indicates that while the aircraft was slowed by reducing throttle, care was not taken to hold 

altitude.  Nevertheless, both the test performed in FSX and X-Plane show trends consistent with the real test data.  

However, both simulation data sets show a stall velocity 4 to 10 knots higher than the actual test data.  Additionally, 

the altitude data suggests that the FSX model had a higher climb rate during the test than the other two.  One 

explanation for the higher climb rate may have been that the engine model in FSX was different or the mixture 

setting, which effects engine performance, was also different.  
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Figure 13. Power off stall test results 

 

Once the power on test was completed, a power off test was also completed per the requirements and procedures 

located in section IIIC of the report.  Figure 13 illustrates the power off stall results with the chart on the left 

showing altitude, while the chart on the right shows airspeed.  As expected for a power off stall, the altitude trend is 

for the most part constant and then after stall a steep drop in altitude occurred. When conducting a stall, the FAA 

requires the pilot to be able to perform the maneuvers without having lost more than 100 ft in altitude; however, the 

stall tests were exaggerated to gain a larger range of data.  

As with the power on stall data, FSX and X-Plane show trends consistent with the actual test data.  The 

difference in altitude evident from the FSX data occurred because the test was initiated at a higher altitude; however, 

the FSX data still shows roughly the same amount of altitude loss.  Additionally, both sets of simulation airspeed 

data show a slightly smaller stall speed.  Overall, the both data sets for the power on and power off stall tests present 

data which is very similar to that of the real thing. 

G. Results – Steady Turn 

The second test conducted involved three subtests of steady level flight at engine RPMs of 2100, 2200, and 

2300.  Each test was conducted using the procedure outlined in section IIID of the report.  The purpose of the steady 

turn test was to look into the accuracy of the engine model and thus the airspeeds at which the aircraft would settle 

during the constant load factor turn.  Figure 14 illustrates the results of the three different turn tests.  The airspeed 

and altitude trends during each test are shown in charts a-c and d-f respectively. 

First, it is interesting to note that the turn tests resulted in a much more sporadic data set between the three test 

mediums.  Looking at the test data from the test conducted with the 2100 engine RPM setting, the initial airspeeds 

show a large spread between initial settling airspeeds in FSX, X-Plane, and the real thing.  Additionally, the altitude 

trends are also different for all three sources.  According to theory, as load factor increases, the airspeed should 

decrease if a constant altitude is held during the turn.  Holding the turn at a constant altitude proved to be a more 

difficult task than expected in the real aircraft.  Nonetheless, when the altitude was held constant for a brief period of 

time, the correct trend of decreasing airspeed was seen in both the FSX and actual aircraft tests.  The X-Plane data 

showed a constant airspeed trend as the load factor was increased and the altitude was held constant. 

The data from the test conducted at an engine RPM of 2200 yielded some different results than the test at 2100 

RPM.  First, the initial airspeed stabilization is more consistent across the three test mediums. Also, the X-Plane data 

shows an increase in velocity as the altitude is held relatively constant during the turn and is not consistent with 

theory and the other two data sets.  The data from the actual aircraft test doesn’t show a decrease and eventual 

settling of the airspeed because the altitude was not held constant during the test.  The same trend is evident for the 

data taken from FSX. 
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Figure 14. Steady turn test results 

 

Last, the turn test conducted at 2300 RPM showed more of the same results described previously. The 

inconsistency in data can be attributed to the lack adhering to the flight test procedure.  The starting altitudes were 

not all the same and altitude was not maintained during the tests. Overall the test data recorded did not produce the 

trends expected and could not be used to compare the accuracy of the simulators with great confidence; however, the 

X-Plane trends shown did raise the question concerning the increase in airspeed at a constant load factor greater than 

one.  A possible explanation for the X-Plane results may be that the equations used in blade element theory do not 

model the coupling of the vertical and directional forces well enough to show the expected trend on such a low 

power aircraft. 

H. Results – Flight Path Stability 

The final tests conducted to compare the three test mediums evaluated the Cessna 172 in the approach condition, 

both with flaps down and up.  For each approach configuration two separate data sets were compiled, one for an 

approach speed of 5 knots above and one for 5 knots below the selected initial speed.  The tests with the flaps down 

and flaps up were conducted with an initial approach speed of 70 and 75 knots respectively.   

The objective of the flight path stability tests was to ensure the aircrafts descent rate did not change significantly 

with a change in flight path angle.  Despite some minor coupling, the effects of change in pitch and throttle are 

considered to be separate.  More commonly know to pilots as pitch for speed and throttle for rate of climb, the 

aircraft should increase speed with a decrease in flight path angle and increase rate of climb with a an increase in 

throttle
2
. 

Figure 15 shows the test results from the flight path stability test in the flaps down configuration.  The altitude 

during the test maneuver is tracked in the plot on the left and the velocity is shown on the right.  Additionally on 

each chart there are two sets of data for each testing medium, one for the test 5 knots below and the other for the test 

conducted 5 knots above the initial speed of 70 knots.  The velocity data shows that it was much more difficult to 

hold airspeed in the simulations than in the actual aircraft.  Most likely the issue that causes trouble with holding 

airspeed in the simulator is that the pilot flying the simulation does not feel any of the accelerations acting on the 

aircraft. Thus, the pilot’s adjustments are often late or too large.  Nonetheless, the altitude data shows good results in 

that there was not a significant change in the slope of the descent line during the test for the two descent speeds.  As 

a result, FSX and X-Plane show similar and correct low speed stability characteristics as the actual aircraft. 
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Figure 16. Flight path stability test without flaps 

 

 

 
Figure 15. Flight path stability test with flaps deployed 

 

 The second flight path stability test that was conducted without the use of flaps is presented in Figure 16. As with 

the test with flaps, the data presented in Figure 16 suggests the same trends are present for the altitude data.  The 

only peculiar set of data is evident in the X-Plane data denoted by the magenta data set.  Most likely the increase in 

descent rate shown can be attributed to pilot error and not a change in the aircrafts flight stability.  Furthermore, the 

airspeed also shows again that airspeed is much harder to hold in the simulation.  Between the two simulations, the 

data suggests airspeed was more easily held in the FSX environment.  

I. Flight Simulator GPS Data 

The final set of data that was analyzed from the simulator tests was the GPS latitude and longitude coordinate 

outputs.  Figures 17 and 18 in the Appendix show the GPS tracks of all the tests performed in FSX and X-Plane 

respectively.  The output data from the simulators was then converted to a Google Earth compatible file which was 

then uploaded to Google Earth for viewing.  Overall the GPS data from both FSX and X-Plane was accurate and 

could prove useful for further analysis of a multitude of simulation based tests.  
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IV. Conclusion 

In summary, the project as a whole was successful in completing its main objectives of comparing the 

capabilities of two different types of flight simulation engines and investigating the ins and outs of flight test in 

general.  Ultimately the data presented did not show with any certainty that FSX or X-Plane was any more accurate 

than the other; however, the data did show that both simulators have extremely accurate models when compared to 

the actual aircraft. Despite a few inconsistencies because of pilot error, the test data from both simulations was 

remarkably similar to that of the actual aircraft.  Furthermore, the data sets may have been more aligned had the tests 

in all three cases been flown with more precision.  Flight testing with high accuracy takes years of training and 

meticulous mission planning, which ultimately is the cause for the high cost of the process.  Through the use of 

flight simulation, unlimited amounts of flight testing can be completed with unlimited possibilities and high 

accuracy for a low cost. 

The next step in validating the two simulations presented in this report would be to conduct higher precision 

flight testing.  Those tests could be done by using an autopilot to help take some of the workload off the test pilot.  

Ultimately, the tests would become more accurate and more convincing conclusions could be made on the strengths 

and weakness of each simulation.  With regards to the output data presented in the results section, FSX and X-Plane 

proved to have very similar results; however, the two simulators differed with regards to user interface and ease of 

use.  X-Plane has a much larger and complex user interface than FSX, which allows for a more customizable 

experience.  Additionally, X-Plane’s ability to test virtually any aircraft configuration without the use of stability 

coefficients is an enormous selling point.  However, the FSX model and overall flight qualities, if a robust set of 

stability derivatives are available, are superior to those in X-Plane. In closing, both FSX and X-Plane have limitless 

potential for flight testing in the commercial and educational arenas. 
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Figure 18. FSX GPS track data 

 

 
Figure 17. X-Plane GPS track data 

 

V. Appendix 
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