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Manual Control Cybernetics:

State-of-the-Art and Current Trends
M. Mulder, D. M. Pool, Member, IEEE, D. A. Abbink, Senior Member, IEEE, E. R. Boer, Member, IEEE,

P. M. T. Zaal, Member, IEEE, F. M. Drop, Student Member, IEEE, K. van der El, Student Member, IEEE, and

M. M. van Paassen, Senior Member, IEEE

Abstract—Manual control cybernetics aims to understand and
describe how humans control vehicles and devices using math-
ematical models of human control dynamics. This ‘cybernetic
approach’ enables objective and quantitative comparisons of
human behavior, and allows a systematic optimization of human
control interfaces and training associated with manual control.
Current cybernetics theory is primarily based on technology
and analysis methods formalized in the 1960s and has shown
to be limited in its capability to capture the full breadth of
human cognition and control. This paper reviews the current
state-of-the-art in our knowledge of human manual control,
points out the main fundamental limitations in cybernetics, and
proposes a possible roadmap to advance the theory and its
applications. Central in this roadmap will be a shift from the
current linear time-invariant modeling approach that is only truly
valid for human behavior under tightly controlled and stationary
conditions, to methods that facilitate the analysis of adaptive, and
possibly time-varying, human behavior in realistic control tasks.
Examples of key current developments in the field of cybernetics
– human use of preview, predictable discrete maneuvering, skill
acquisition and training, time-varying human modeling, and
neuromuscular system modeling – that contribute to this shift
are presented in this paper. The new foundations for cybernetics
that will emerge from these efforts will impact all domains that
involve humans in manual and semi-automatic control.

Index Terms—Manual control, man-machine systems, cyber-
netics, dynamic behavior, modeling

I. INTRODUCTION

CYBERNETICS is a system-theoretical, model-based ap-

proach to understand and mathematically model how

humans control vehicles and devices [1]–[6]. Most of current

cybernetics theory has been developed in the 1960s – for

1960s technology – and has been applied in aerospace [7]–

[29], automotive [30]–[46], other vehicles [47]–[52], robotics

[53]–[57] and medical applications [58]–[61]. The power of

cybernetics is evident from the seminal crossover model [2]–

[4], which captures the systematic adaptation of the Human

Controller (HC) to the dynamics of the controlled vehicle or

device, to achieve good feedback performance and robustness

which are largely invariant with the controlled system. By
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revealing such key invariants and providing a means for

predicting manual control performance, classical cybernetics

theory has accelerated many innovations in human-machine

control system design, such as in aerospace [7]–[17].

Despite its many successes, cybernetics theory has also

often been shown to be limited in capturing the full breadth of

human cognition and control. Modern interface technologies,

such as three-dimensional visual displays [6], [62], [63] and

haptic (shared) control manipulators [43]–[46], [55], [64] are

rapidly expanding the way humans can interact with dynamic

systems. They also dramatically expand the factors that drive

human control adaptation. It is safe to say that, despite

haphazard attempts to update cybernetics theory, the progress

in technology has leapfrogged the classic cybernetics theory,

and our current tools and models fail to completely explain

and predict how humans interact with modern interfaces.

State-of-the-art cybernetics theory describes human con-

trollers as (quasi-)linear, time-invariant (LTI) feedback systems

[2]–[4], [65]–[77]. The most successfully applied models are

those that consider human behavior in the highly-constrained

compensatory tracking task [2], [69], without any preview of

future task constraints, allowing the operator only to react on

what happens (pure feedback). The time-invariance assump-

tion prevents us from modeling what is a defining attribute of

human controllers, namely their ability to adapt to changing

situations, which, in the age of increasing automation, is often

the only reason humans are kept in the control loop. The

same theoretical constraints that prevent us from studying and

understanding human learning, adaptation and the versatile set

of anticipatory feedforward control behaviors, also prevent us

to optimize current-day control interfaces in realistic tasks.

But this lack of understanding of realistic HC behavior is

not our only problem, as also our methodology and tools to

identify human manual control are limited to rather crude

experimental techniques. We can only identify the overall,

lumped response of a fully-trained human, based on pro-

longed measurements [69], [78]–[84]. This approach fuses all

cognitive and physiological adaptations and averages-out all

adaptation effects, preventing us from understanding design-

relevant aspects of human adaptation and learning.

In the past decade, we have come to the conclusion that the

intertwined theoretical and methodological limitations of the

state-of-the-art in cybernetics theory have become a limiting

factor in evaluating and improving our manual control inter-

faces. The inability to step-up from classical compensatory

control to more relevant real-life tasks means that we are

dmpool
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currently able to model only the exception in manual control,

and not the rule. We see a striking similarity to the domain of

human visual perception, where in the 1950s the psychologist

James J. Gibson came to the conclusion that “the theory

of visual perception is all wrong” [85]. The theory and

experiments at that time studied visual perception performance

mainly through forcing human subjects to look at static scenes,

from a fixed position. Gibson was the first to conclude that

staring at static pictures is an exceptional case, as human

visual perception is all about dynamically perceiving (and

acting upon) the dynamics of environments, leading to the now

overarching ecological perspective on visual perception [86].

We strongly believe that cybernetics theory should step

up from studying merely the exception in manual control –

compensatory behavior – to the rule. Relevant control tasks

have preview of the future constraints and in many cases not

only allow, but actually require human adaptation. A targeted

research effort is needed to radically advance our theory, our

models, our tools. We must address some fundamental research

questions on human manual control. Examples are: 1) How

do humans use preview of future task constraints? 2) What

are the factors and mechanisms that drive adaptation, and

which invariants in adaptation exist? 3) To what extent are

measured human adaptations caused by physiological (e.g.,

neuromuscular) rather than cognitive adaptations? 4) What

are the temporal scales of human adaptation and learning in

changing situations? 5) What novel control theories and system

identification techniques exist that could allow us to study

time-varying and possibly non-linear manual control?

With this paper we aim to provide an overview of the field

of manual control cybernetics, elaborate on its fundamental

problems, provide a way forward, and show some of the

latest results in extending theory and applications. The paper

is structured as follows. In Section II we attempt to briefly

summarize the state-of-the-art; for some earlier summaries one

is referred to [2]–[4], [74], [76]. A roadmap to systematically

address the fundamental challenges is provided in Section III.

A number of key theoretical and methodological innovations

that follow from this roadmap will be discussed in Section IV.

Three novel applications of cybernetics theory, in haptic feed-

back design, multi-modal simulator fidelity evaluations, and

transfer-of-training studies are summarized in Section V. The

paper will end with a conclusions section.

The paper’s scope is intentionally kept limited, by mainly

focusing on classical control-theoretic frequency-domain ap-

proaches to modeling human control dynamics, and only

occasionally referring to other modeling perspectives that have

emerged in the past decades, such as those originating from

optimal, robust or satisfying control theory, and time-domain

analysis. In our experience, it is mostly this first class of

physical models that has prevailed, also because – the perhaps

in principle more generic and certainly intellectually appealing

– optimal human control models [87]–[89] have shown to be

over-parameterized [90] meaning that they cannot be validated

experimentally. Further note that, in our discussion of inno-

vations and applications, we focus primarily on the ongoing

activities in our labs, as modernizing cybernetics theory is one

of our key objectives.

II. STATE-OF-THE-ART

A. Successive Organization of Perception

In 1960, Krendel and McRuer [68] first introduced the Suc-

cessive Organization of Perception (SOP) hierarchy for human

manual control. The SOP postulates a framework describing

the development of skill-based manual control behavior, in

three stages: compensatory, pursuit and precognitive control,

see Fig. 1 for schematic representations. Depending on the

defining features of the control task, such as the display format

and the applied forcing functions, and training, human opera-

tors may apply compensatory, pursuit, or precognitive control

strategies, or could be switching between any combination of

these levels [68], [71]. The next subsections discuss the three

SOP levels in more detail.

ft + e
−

Human controller

n

+
+ x

Hc(s)

fd

+
+u

Hp(s)

(a) Initial phase: single-loop compensatory behavior

ft + e
−

x

−

Human controller

+
+

ft

n

+
+ u x

Hc(s)

fd

+
+

Hpt(s)

Hpe(s)
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(b) Second phase: multi-loop pursuit behavior

ft

+

Human controller

+
+

≈

1

Hc(s)

n

+
+ x

Hc(s)
mode

selector

synchronous

generator

learned

response

fd

+
+u

(c) Final phase: open-loop precognitive behavior

Fig. 1. Schematic representations of the three stages of control behavior
described in the Successive Organization of Perception (SOP), initially de-
scribed in [68], later adapted in [71]. These figures are reproduced, with
minor modifications, from [71].

B. Compensatory Tracking

In the compensatory stage, see Fig. 1(a), the human con-

troller (HC) acts solely on the error e between the reference

and the system output [67]. The HC responds only to the error,

either because it is the only perceivable signal, or because the

HC chooses to act on the error only. Compensatory control

has been studied extensively for control tasks were the HC

could only perceive the error, and all forcing functions were

unpredictable [2], [52], [65], [69], [79], [80]. Reasons for

retaining a compensatory organization in situations where

more signals can be perceived are: 1) a lack of experience, the

HC has not yet learned sufficiently to progress to the pursuit or

precognitive stages, 2) the HC is under stress, causing him/her

to ‘revert’ to a compensatory organization, or 3) a pursuit
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Forcing

Functions

Displays Controlled
Element

Mission

Commands

Perceived Inputs,
Outputs and

Errors
Control
Actions Outputs

Motion Feedbacks

Disturbances

TASK VARIABLES

In-Flight vs. Fixed-Base

Vibration

G-Level

Temperature

Atmospheric Conditions

Etc.

ENVIRONMENTAL VARIABLES:

Motivation

Stress

Workload

Training

Fatigue

Etc.

OPERATOR-CENTERED VARIABLES:

Instructions

Practice

Experimental Design

Order of Presentation

Etc.

PROCEDURAL VARIABLES:

Human
Pilot

Manipulator

Fig. 2. The variables that affect a closed-loop human controlled system, reproduced from [2].

or precognitive organization is not beneficial for improving

performance [68], [75].

Pioneering research into human tracking behavior by Tustin

[65] and Elkind [66], [91] led to a comprehensive framework

for the analysis and modeling of compensatory control be-

havior in the 1960s [2]–[4], [67]–[69]. Much of our current

knowledge stems from these investigations into human dy-

namics during single-loop compensatory tracking tasks [2],

[66], [69]. This research also showed the complexity of

studying the human controller, due to her or his capacity to

adapt to a myriad of task, environmental, operator-centered,

and procedural variables, as summarized in a comprehensive

overview compiled by McRuer and Jex [2], see Fig. 2.

For the most basic SOP level of compensatory control, the

well-known crossover model given by (1), in combination

with the verbal adjustment rules of [2], accurately describes

a crucial invariant of HC behavior in the systematic HC

adaptation to some of the key task variables: the controlled

system dynamics (Hc) and the bandwidth of the applied

forcing function spectra:

Hp(jω)Hc(jω) =
ωc

jω
e−jωτe (1)

To induce a compensatory control organization, and thus

force the HC into a mode where she or he cannot anticipate

on what comes next, the applied forcing functions must

be random-appearing [2], [66], [67], [69]. Typically, this is

achieved by using quasi-random multisine signals, sums of

a sufficient number of individual sinusoids that span the

frequency range of interest [69], [92], [93]. Not only do such

multisine forcing functions force compensatory control, they

also facilitate the straightforward identification of frequency-

domain describing functions of human dynamics in compen-

satory tracking tasks [69], [78], [80]. Using the quasi-linear

model assumption, the linear, time-invariant (LTI) part of the

HC can then be modeled. The remainder, called ‘remnant’, is

usually neglected, despite attempts to provide some rationale

for the remnant component as well [2], [94], [95].

Even though a number of different LTI models for compen-

satory HC dynamics have been proposed [15], [21], perhaps

the most-used is the precision model, which is given by (2)

in a form that, compared to its definition in [69], omits the

indifference threshold describing function.

Hp(jω) =

equalization
︷ ︸︸ ︷

Kp

(
TLjω + 1

TIjω + 1

)

low-freq. lag-lead
︷ ︸︸ ︷
(
TKjω + 1

T ′
Kjω + 1

)

delay
︷ ︸︸ ︷

e−jωτ ×







1

(TN jω + 1)

([
jω

ωnm

]2

+ 2ζnmjω
ωnm

+ 1

)







︸ ︷︷ ︸

neuromuscular dynamics, Hnm

(2)

In this model, the main adaptation of the HC dynamics Hp

to the dynamics of the controlled system Hc is captured by

the equalization term of the model. Depending on what type

of equalization is required to satisfy (1) for a given Hc, the

lead-lag equalization form of (2) may reduce to a pure lead, a

pure lag, or a pure gain [69]. Furthermore, the precision model

includes an additional low-frequency lag-lead term, for cap-

turing low-frequency phase equalization found in describing

function data [2], [69]. Finally, the model includes terms that

account for characteristic HC limitations in a delay term e−jωτ

and the neuromuscular actuation dynamics. In more recent

applications of the precision model, the low-frequency lag-lead

is often omitted and neuromuscular dynamics are simplified

to the second-order term only [12], [25], [27], [92], while

extended equalization was proposed for control of systems

with underdamped modes [27].

Theories and models for compensatory tracking have been

extended to multi- or multiple loop control tasks. Here, a

distinction is often made between control of 1) multiple

nested loops (e.g., aircraft pitch and altitude) [2], [32], [71],

[73], [96], 2) multiple (coupled) parallel loops (e.g., aircraft

pitch and roll) [2], [70], [73], [77], [79], [97]–[99], and

3) a single-loop task with a single controlled variable, but

with a multi-loop HC feedback organization (e.g., multimodal

visual/vestibular feedback) [21], [25], [100]. Multi-loop sce-

narios typically result in elaborate and often over-determined

HC models, requiring extended identification and modeling

methods to separate the different HC responses [79], [81]–
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[83]. It is safe to say that current-day cybernetics theory and

methods, predominantly deal with single-loop compensatory

tracking. Only for this extremely simple task do we have

accepted, universal models, such as the crossover and precision

models, that allow us to predict how a (well-trained) HC adapts

to task variable settings.

C. Pursuit Tracking

In the pursuit stage, see Fig. 1(b), the HC utilizes a

combination of at least two of the following control strategies:

1) a feedforward response (Hpt
) on the target ft [101], [102],

2) a compensatory feedback response (Hpe
) on the error e as

in compensatory tracking [101], and 3) a feedback response

(Hpx
) on the system output x [101]–[103]. The theoretically

optimal pure feedforward control law approximates the inverse

system dynamics, i.e., Hpt
≈ 1/Hc [101], [104], while

feedback of the system output x is useful for mechanizing a

stabilizing “inner” control loop, mostly for tasks with sluggish

system dynamics [101]. Key is, however, that a “pursuit”

organization of HC behavior is not adopted in all tasks where

the feedbacks to support it are available [75], [101], [105]. The

opposite holds as well: a pursuit (or even precognitive, see Sec-

tion II-D) strategy may be developed even in a compensatory

tracking task – so, if no additional feedbacks are available –

for example when forcing functions are predictable.

Many studies report improved task performance when HCs

reach the pursuit stage [101], [105]–[109]. As proposed in

[101], the underlying change in HC control behavior can be

detected from the ‘effective open-loop describing function’

– i.e., the describing function from the tracking error e to

the system output x – which shows strongly reduced low-

frequency phase lag in pursuit [75], [101]. While helpful for

detection, the effective open-loop lumps together all control

dynamics and thus does neither reveal the true adopted HC

control organization, nor the separate contribution of each

feedforward or feedback response (e.g., Hpt
, Hpe

, and Hpx
).

Compared to the modeling of HC behavior in compensatory

tasks, pursuit tracking tasks have received meager attention

[75], [101], [102]. The main reason is that the multi-loop

control behavior in pursuit (see Fig. 1(b)), makes its modeling

significantly more complicated [75], [101]. In pursuit tasks,

HCs may choose to mechanize feedforward and/or feedback

control responses driven by the ft, e, and x signals, see

Fig. 1(b). However, as e = ft − x, only two of the three pos-

sible HC responses are independent, resulting in an inherently

overdetermined model structure. For modeling pursuit control,

model structures that include Hpt
and Hpe

[2], [101], [102],

[110], Hpe
and Hpx

, or Hpt
and Hpx

[111] have all been

proposed and applied. Furthermore, from an identification

perspective, the pursuit task requires two independent forcing

function signals (ft and fd in Fig. 1(b)) to separately estimate

the two independent describing functions [79], [81] and model

both using LTI model structures. Up until quite recently, this

has almost never been tried [104], [111].

What is stated for pursuit control, is even more true when

the HC has preview on the future task constraints, like the

future trajectory of the target signal [112]. With the direct

capacity for overcoming inherent HC control delays, preview

almost invariably results in improved task performance far

exceeding that of pursuit [80], [89], [113], [114]. In essence,

in tasks with preview, HCs adopt a pursuit control organization

with a strong feedforward Hpt
response driven by the future

target signal. From sampling and cueing theories, it is known

that HCs become almost optimal samplers with preview [89],

and that HCs’ internal representation [115] of task variables

greatly improves. The human response to preview is a con-

volved and very likely time-varying weighing of this future

information [112], which cannot be directly measured, as an

infinite number of different weighing mechanisms theoretically

yield the same control response. Even more than for pure

pursuit, the difficulty for preview control lies in the fact that,

when preview information becomes available, a multitude of

control strategies become possible [111], [112].

When considering realistic manual control tasks, it is diffi-

cult to think of tasks that better resemble pure compensatory

tracking than pursuit or preview tracking. Therefore, there is a

strong need for universal models for HC pursuit and preview

control, similar to those that are available for compensatory

control. Given the increased degrees-of-freedom in HC adapta-

tion, developing such universal models and sets of “adjustment

rules” for pursuit and preview control is extremely challenging.

Still, a firm grasp of how humans control in pursuit or preview

is one of the main crucial elements that is missing in the

current cybernetics state-of-the-art.

D. Precognitive Control

In the precognitive stage, see Fig. 1(c), the HC is assumed to

have complete knowledge of the target signal and to generate

a control input that results in perfect target tracking [72],

[108], [116]. In the precognitive phase, HCs may develop

purely open-loop control responses based on a fully-developed

internal representation of task demands, such as dominant

frequency components and the controlled system dynamics

[68], [71]. The HC does not actively rely on any feedback,

at least not for a particular time interval [71].

When the SOP was postulated, the hypothesized precogni-

tive level was not yet fully supported, mainly because direct

identification of human feedforward responses was lacking

[68]. Still, a broad collection of empirical observations and

recent data support the SOP’s precognitive phase. For ex-

ample, numerous studies report notably improved tracking

performance when following ‘predictable’ target target sig-

nals, in comparison with ‘unpredictable’ signals [72], [106],

[108], [117]–[120], even for signals with equivalent frequency

content and bandwidth. Further evidence for the development

of a precognitive control mode has been found with observed

response time delays and phase lags that are smaller than a

‘normal’ human reaction time [108], [121]. Finally, studies

involving temporal occlusion [116], where HCs tracked a sum-

of-two-sines target signal for a certain time, after which the

display was switched off, also report reasonably accurate con-

tinued tracking of predictable, repetitive signals only. Though

lacking a formal definition of subjective predictability and

empirical evidence for its limits, these observations provide

indirect evidence for a precognitive strategy.
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To conclude, ample indirect and mostly qualitative evidence

of a precognitive level of manual control exists. Still, in

most cases the evidence is thin, with possible alternative

explanations that do not require the existence of a true

precognitive control strategy (e.g., strongly adapted feedback

control). Except for a rudimentary understanding and proposed

cybernetic models for the (partially) precognitive feedforward

control in ramp tracking tasks [104], [122], [123], we still lack

a structured, systematic understanding of the final level of the

SOP, as would be relevant to real world applications.

E. Neuromuscular Dynamics

Cybernetic theory emphasizes how control inputs to the

plant result from visual and vestibular cues. But McRuer [124]

already stated in 1966 that neuromuscular actuation properties

are “an essential element in the operators dynamic character-

istics”. He recognized that the neuromuscular system (NMS)

constitutes an inner loop that not only translates desired control

inputs to realized control inputs, but that can also provide very

fast reflexive feedback to forces on the control device, even

instantaneous responses from (co)contracted muscles and pas-

sive limb dynamics. Although subsequent work also took into

account this ability of the neuromuscular system to provide

force feedback [2], [87], [124], [125], this detail has been

neglected in later cybernetic studies. Often, the neuromuscular

system is viewed as a physical limitation, to account for the

fact that physical properties of our body coupled to the control

interface inherently limit the bandwidth of HC control inputs.

This limitation shows up in HC describing functions as a

distinctive peak around 2-4 Hz, with an ensuing decay.

Mathematical models of NMS dynamics were developed in

parallel to HC models [2], [87], [124], [125], see also (2). In

HC models, the combined manipulator and NMS dynamics

are typically accounted for with a single, lumped, low-order

model; generally an underdamped second- or third-order low-

pass transfer function [2], [124]. That no separate gain is

modeled, indicates the assumption that the NMS is fully

adapted to the control device dynamics [19], [126], [127], and

also avoids over-parameterization. The estimated parameters

of the cut-off filter have been shown to vary as a function of

manipulator characteristics [127], [128], the controlled system

dynamics [111], [123], and the presence of motion feedback

[25]–[27]. Simplification of the neuromuscular system as a

‘physical limitation’ described by a filter is valid for ap-

plications where the operator controls a system where the

control device receives no force feedback about plant states.

Such applications include fly-by-wire aircraft, rate-controlled

systems, or uni-directional telemanipulation.

For other control tasks, force feedback on the control

interface is essential for human operator performance. For

instance, during driving, forces and movements at the tires

are physically coupled to forces and movements at the steering

wheel, allowing the neuromuscular system to respond to force

perturbations from wind gusts or road properties – before these

perturbations change vehicle states enough to be observable by

visual or vestibular cues. The neuromuscular system then acts

as an inner-loop, responding to forces very quickly (through

reflexive feedback) or even instantaneously (through limb iner-

tia and visco-elasticity of co-contracted muscles). Frequency

response functions (FRFs) of the NMS can be estimated as

“admittance”, a measure of the allowed limb displacement due

to an applied force [129]. HCs can adapt the admittance of

their NMS – i.e., how “stiff” or “compliant” their response to

forces is – which affects control performance in car driving

[40], [45], aircraft control [24], and the impact of biodynamic

effects in moving environments [130], [131].

Proposed models to describe NMS contributions to operator

control dynamics are based on theory about muscle and

arm dynamics [19]. Functional mathematical models typically

describe overall endpoint admittance by separating manipu-

lator dynamics from neuromuscular dynamics, which com-

prise passive limb dynamics (inertia, visco-elastic properties

of ligaments and (co)contracted muscles), reflex dynamics

(position and velocity feedback from muscle spindles and

force feedback from Golgi tendon organs) as well as their

interaction through cognitive processing [24], [132].

Clearly the NMS can increase or decrease admittance

through many mechanisms, whose interactions are complex

to determine. This means that NMS model structures are per

definition over-determined, making the parameters difficult to

extract from physical measurements. Regardless, the NMS

needs to be taken into account, to avoid attributing its con-

tribution to visual or vestibular control activity.

III. NOVEL FRAMEWORK FOR CYBERNETICS

The cybernetics overview of the previous section clearly

showed that our knowledge and methods mostly cover highly-

constrained tasks – mainly compensatory tracking – that are

quite far from typical real-world manual control scenarios. In

this section we propose a five-step framework [84] to increase

our understanding of the learning and adaptive human con-

troller, see Fig. 3. It consists of five “steps”, each describing a

major extension of our knowledge of human control, that will

take the field of manual control cybernetics from its current

state-of-the-art (shown with the gray shaded area in Fig. 3) to

the level required for applications to real-world optimization

of human control interfaces and training.

Central in the framework is the concept of Internal Rep-

resentation (IR) [115] that, as shown with the purple blocks

in Fig. 3, is developed and refined during learning, when the

HC is exposed to the task constraints. For manual control,

primarily the task variables of Fig. 2 characterize the task,

especially key task variables such as the plant dynamics (P)

and the statistical properties of the target and disturbance

signals (T and D). Our premise is that it is the IR, the

quality of which increases with exposure and experience, that

is the critical driver behind human control adaptations. The IR

enables HCs to evolve through the different phases of the SOP

and thereby develop an optimal combination of feedforward

(FF) and feedback (FB) control to satisfy task constraints.

The following subsections describe the different fundamen-

tal steps of the proposed framework of Fig. 3 in more detail.
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Fig. 3. A proposed framework for understanding the learning and adaptive human controller, reproduced from [84].

A. Steps 1 + 2: Understanding Pursuit and Preview

The first two steps to update our theory, see Fig. 3, focus on

developing validated and practical models and analysis meth-

ods for HC control at the pursuit level (Step 1), as well as for

human preview control (Step 2). While often seen as separate

levels of HC behavior, pursuit can be viewed as an extreme

(zero preview) case of preview control. Furthermore, both

pursuit and preview are characterized by a strong feedforward

component [75], [111], [112]. Hence, in our view, Steps 1 and

2 will be studied in unison. Similar to the crossover model for

compensatory tracking [2], [68], there is a need for a universal

model for pursuit and preview control, with an extensive set –

in fact a much more extensive set given the additional degrees-

of-freedom in HC adaptation – of adjustment rules for the key

HC control responses and parameters.

Developing this added understanding and modeling

“toolkit” will require a significant amount of new experimental

HC data, where human control is measured with a wide

variation in critical task variables, such as plant dynamics (e.g.,

linear vs. non-linear), target and disturbance signal properties

(e.g., spectrum, stochastic properties, predictability), and dis-

play and preview settings. Experiments can be preceded by

a theoretical analysis and computer simulations, e.g., through

assuming optimal control [87], [89], to explore the parameter

sensitivities and theoretically optimal information-weighing

strategies for human control in pursuit and preview tasks.

Steps 1 and 2 are required to ensure the applicability of

cybernetic models for the design of manual control interfaces

to support HCs in realistic, real-life control tasks, where our

current lack of understanding of how HCs actually control

leads to sub-optimal support systems. For example, this is

evident in the haptic shared control systems [44] that are

currently being developed to support car drivers, whose control

is strongly based on both visual preview of the road ahead and

a neuromuscular response to the guidance forces [43], [45].

B. Step 3: Isolating Neuromuscular Adaptations

The study of human control dynamics relies heavily on

their identification from measurements of HC “inputs” and

“outputs”, inherently resulting in a “lumped” insight into all

effects of HC adaptation to various task variables. Isolating

NMS contributions from the lumped adaptive HC data is

essential to lift the “blurring” effects of different parallel

modes of HC behavior. Also during learning, the HC dynamics

change not only due to “higher-level” cognitive adaptations, as

described in the SOP, but also due to “lower-level” underlying

physical adaptations in the neuromuscular system [133].

Motor control literature has shown the synergy between im-

proving internal models for limb movement and accompanying

reduction in co-contraction of relevant muscles [134], which

may also occur during driving: during repeated lane-changes

performance increases, while muscle co-contraction reduces

[39]. Hence, to understand the learning and adaptive nature of
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HCs, we need to study the synergy between low-level NMS

adaptations and higher-level learning, see Fig. 3. That is: how

is the IR learned, and how does it drive adaptation of the HC’s

feedback, feedforward, and NMS dynamics?

This requires better understanding of the (time-varying)

nature of NMS adaptations in manual control and which NMS

parameters change the most, both captured in models of the

adapting HC dynamics – at “higher-level” and “lower-level”.

Essential here is to improve our measurement techniques, to

obtain more accurate and less intrusive estimates of the time-

varying NMS settings, for instance by taking additional non-

intrusive grip force measurements that are often related to

NMS admittance settings [135].

C. Step 4: Understanding Learning

Although closely related, we distinguish between learning

(Step 4) and adaptation (Step 5) as follows. Learning involves

how the novice human controller matures, for a fixed set of

task variables, to an expert controller, establishing the best

compromise between control effort and control performance.

Adaptation is seen as the process where a HC, proficient in

the manual control of the whole set of task variables under

investigation, switches from one control strategy to another

when one (or more) of the task variables change. Generally

speaking, training a learning HC to full proficiency is a

comparatively slow process when compared to the often rapid

HC adaptation response to a change in task variables.

An understanding of learning of the human controller can,

in our view, best be gained from investigating how the HC’s

internal representation (IR) of the task develops over time.

Fig. 3 illustrates that the IR evolves during learning, perhaps

even from scratch with novice controllers. The IR is used

by the brain to adapt the feedback and feedforward control

mechanisms and NMS dynamics (the purple parts in this

figure) to balance control effort and performance.

Where the majority of our current knowledge of cybernetics

is based on the control behavior of well-trained subjects

under steady-state task conditions, elucidating human control

learning requires a completely different approach: monitoring

the progress during the full learning curve, observing novice

HCs become expert controllers. This requires dedicated experi-

ments, which explicitly focus on training HCs, covering a wide

variety of constant tasks and task variables. This gives insight

into how IRs evolve in relation to specific task characteristics

and how HCs develop proficient control skills to deal with

combinations of different task variables.

Such data would facilitate “probing” the quality of the

evolving IR, to observe the extent to which novice controllers,

while gaining experience, develop an accurate IR of the

task constraints, to become experts. Of special interest for

understanding HCs’ learning are the possible limitations in

the evolving IR and especially the temporal scale of learning

for different key task variable combinations. The capability

to peek into the what is currently a “black box” of human

learning, and quantify the dynamics of experience, may have

great impact in all domains where humans are trained to

manually control dynamic systems.

D. Step 5: Understanding Adaptation

When task variables – which represent “situations” from a

control-theoretical perspective – change during manual con-

trol, proficient human controllers may detect these changes

because their expectation obtained from the IR (see Fig. 3)

does not match their observation. The plant will respond to

the control commands in a different way than expected, with

the expectation driven by the IR, resulting in an innovation

(the large i in Fig. 3). This mismatch then triggers cognitive

adaptations in the HC’s feedback and feedforward control

dynamics, as well as physiological changes in the NMS, as

indicated with the purple parts of Fig. 3.

When studying human control adaptation, intriguing ques-

tions include what external factors drive the IR adaptation,

to what extent do controllers detect these changes, and how

exactly the IR in turn drives the various adaptive parts of

human control behavior. Hence, we need experiments that

include systematic explicit time variations in task settings, to

gain full insight into whether, to what extent, and how fast,

HCs and their IRs adapt to such changes. Of special interest

would be ‘hysteresis’-effects that may occur when humans

adapt, back and forth, to varying task parameters.

Steps 4 and 5 both entail the development of a com-

pletely new theoretical framework for cybernetics, within

which human adaptive control capabilities can be interpreted

and predicted. A truly focused analysis of adaptive human

control not only requires focused experimentation, but also

significant methodological advances. Most notably, we need an

ability to explicitly capture the time-varying nature of human

controllers, perhaps even in real-time. The main thrust forward

towards understanding HC learning and adaptation would be to

move to intrinsically time-varying manual control identifica-

tion and modeling, for which novel excitation techniques and

test signals – with the lowest possible level of intrusiveness –

are definitely needed, to ensure the most reliable results.

IV. CURRENT INNOVATIONS

Here we present three examples of current investigations

that contribute to the roadmap discussed above, which all

highlight the combination of theoretical and methodological

advances that is required. Examples include human preview

control, feedforward control with predictable target signals,

and time-varying behavior.

A. Manual Control with Preview

There is a need for a universal model for HC preview

control, together with a set of adjustment rules for HC adapta-

tion in preview tasks. Many HC preview control models have

been proposed (e.g., [20], [30], [31], [33]–[38], [41], [113]),

mostly based upon the pioneering work of Sheridan [112].

None of these preview models has been widely accepted,

mainly because the enormous variation in control organization

HCs can adopt in preview tasks is still poorly understood.

Even in constrained laboratory tracking tasks determining

these characteristics is difficult, as preview information allows

HCs to adopt separate responses to any part of the previewed

target trajectory ahead (Hpt
), the controlled element output
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Fig. 4. Illustration of the approach to derive the human controller model for preview tracking tasks in [111]. Based on non-parametric estimates (top left) of
the human’s target and feedback response dynamics (top right), the inputs, control organization, and control dynamics of the human controller model were
obtained (bottom).

(Hpx
), and the error (Hpe

), see Fig. 1(b). Therefore, single-

loop system identification techniques, which enabled the de-

velopment of models for compensatory tasks (see Section II),

no longer suffice. Moreover, it is impossible to independently

identify all three control responses, Hpt
, Hpx

, and Hpe
,

due to the interdependence between the three input signals

(e = ft − x) [101].

Recently the HC’s control dynamics in tracking tasks with

preview were estimated non-parametrically with multi-loop

system identification techniques [111]. Conditions included

both zero-preview pursuit tracking tasks, and tasks with 1 s

preview. Only the Hpt
and Hpx

dynamics were estimated,

which are thus contaminated by the HC’s response to the

current error Hpe
, if such a response is actually present [111].

Results from [111] are reproduced in Fig. 4. Based on the

non-parametric estimates of the HC dynamics (black and gray

markers in the Bode plots of Fig. 4), separate models for Hpt

and Hpx
were formulated, after which the model was restruc-

tured into the more intuitive form shown at the bottom of

Fig. 4. This model is the first that is based on objective multi-

loop measurements of HC’s input-output relation, without any

a priori assumptions on the HC dynamics.

The novel model provides a new view on preview tracking

behavior. Two distinctly different responses are initiated: a

near-viewpoint response with respect to a point on the target

τn s ahead (typically 0.1-0.9 s), and a far-viewpoint response

with the target τf s ahead as input (typically 0.6-2 s). HCs

track low frequencies in the target signal (up to about 6-10

rad/s) predominantly with the far-viewpoint response, which

is a combined feedback/feedforward control mechanism on the

pursuit level of the SOP. The near-viewpoint response – an

open-loop control mechanism – is more effective at higher

frequencies. Note that the far-viewpoint response is the HC’s

main control mechanism in preview tasks, while the near-

viewpoint response is an optional additive response that can be

used to further improve high-frequency target-tracking [114].

The far-viewpoint “filter” provides a pre-shaped input to

an error feedback response, which is equivalent to the error

response in compensatory tracking tasks [2], see (2). However,

instead of responding to the current error e, the error e⋆

in preview tasks is an internal (non-physical), time-advanced

error, based on the difference between the (possibly smoothed

and scaled) far-viewpoint and the controlled element output.

The far-viewpoint response includes a low-pass, or smoothing

filter 1/(1+Tl,f jω), with a bandwidth determined by the time

constant Tl,f (typically 0-1 s), to capture only the target’s

low frequencies. The far-viewpoint gain Kf (typically 0.5-

1.2) reflects how aggressive the HC tracks the target: Kf = 0
indicates that the HC completely ignores the target to focus

purely on stabilizing the controlled element. Note that, when

Kf = 1, and τf = Tl,f = 0 s, the internally calculated error

e⋆ equals the actual error e, and the far-viewpoint response

equals the precision model for compensatory tracking [69].

A large benefit of this novel model is that its parameters

have an intuitive physical interpretation, which can 1) provide

unique insights into possible invariants of HC behavior, and 2)

allow for predicting HC behavior. Working towards a universal

model for preview control tasks, current research focuses on

quantifying a set of adjustment rules for preview control,

including HC adaptation to controlled element dynamics [114],
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preview time, and target signal characteristics (e.g., band-

width). Furthermore, our knowledge of human use of preview

information must be extended from tracking to more realistic

control tasks with preview, like car driving. Therefore, current

work also investigates how HC preview control is affected by

linear perspective [136] and inner feedback-loop closures due

to the presence of inertial motion and a visual flow field.

B. Feedforward on Predictable Target Signals

In situations where the HC does not have preview informa-

tion on the target, he/she might still have prior information

on the future course of the target through memory or predic-

tion. The HC might operate a feedforward response on the

target, in addition to a closed-loop feedback response, which

allows the HC to improve target-tracking performance without

sacrificing closed-loop stability; a key sign of effective HC

adaptation. In realistic control tasks, the desired trajectory

often has a simple waveform-shape, e.g., constant-velocity

ramp or constant-acceleration parabola segments, making the

target signal predictable and easy to memorize. Although

control responses involving a feedforward were frequently

hypothesized [2], [68], [71], [72] and empirical evidence was

presented [75], [101], [105], [108], [121], they were never

explicitly investigated with system identification and parameter

estimation methods until recently.

Established identification methods, such as the Fourier Co-

efficient method [79], [81], cannot be used with target signals

that have power at all frequencies, such as ramps. Studying

feedforward thus requires novel black-box HC identification

methods, e.g., based on LTI AutoRegressive with eXternal

input (ARX) models [137]. Fig. 5 shows identification results

obtained with the novel ARX-based method of [137] from a

human-in-the-loop tracking experiment featuring target signals

consisting of ramp segments [138]. Black-box identification

results as shown in Fig. 5, provide a means to objectively

detect the presence of feedforward HC control responses. Also,

they reveal the nature of the adopted feedforward control

dynamics, which enables the mathematical modeling of HC

feedforward behavior [104], [123].

Fig. 5(a) shows the estimated feedforward (Hpt
) dynamics

for twelve participants who performed a ramp-tracking task,

compared to the theoretically ideal feedforward law, equal

to the inverse system dynamics 1/Hc. The range for which

the ARX identification results are valid, based on the lowest

and highest frequency component in the applied disturbance

signal fd, is indicated with two dashed vertical lines. At low

frequencies, the estimated feedforward dynamics evidently

approximate 1/Hc, except for a slight difference in gain.

For ω > 2 rad/s the responses deviate from the theoretical

optimum, flattening as a low-pass filter, with considerable

spread between subjects. For most subjects, the phase response

rapidly becomes more negative, suggestive of a considerable

feedforward delay. For four participants, however, the phase

response is mostly flat or even becomes positive, indicating a

negative time delay and thus anticipation of the future course

of the target. From observations it can be deduced that the

feedforward path Hpt
of the HC model of Fig. 5 can be
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Subjects

ω, rad/s

6
Ĥ
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Fig. 5. HC model consisting of a feedforward path Hpt and a feedback
path Hpe with estimates of the feedforward and feedback dynamics of twelve
subjects tracking a predictable target signal consisting of ramp segments. Data
are from [138], for Hc(s) = 1/s.

modeled with a gain, inverse system dynamics [101], a low-

pass filter [123], and a time delay:

Hpt
(s) = Kpt

1

Hc(s)

1

(TIts+ 1)2
e−τpts (3)

As is clear from (3), Hpt
approximates the theoretically

optimal feedforward response, 1/Hc, for Kpt
≈ 1, TIt ≈ 0 s,

and τpt
≈ 0 s. With clearly imperfect feedforward control (see

Fig. 5(a)), Fig. 5(b) shows that the feedback component Hpe

of the combined feedforward-feedback HC model is indeed

required. It can be modeled with a structure identical to well-

known models of compensatory HC behavior [69], [101],

[104], [123], such as the precision model of (2).

A key example of where feedforward HC models provide

increased understanding, is HCs’ sensitivity and adaptation to

predictable target signals [72], e.g., signals that consist of only

one or two sine waves [108], [121]. For instance, in [120]

HCs were asked to track three pairs of “harmonic” (H) and

“non-harmonic” (NH) multisine signals, consisting of 2, 3, or

4 sinusoids with a pursuit display. Analytical analysis with

a (linear) HC model as shown in Fig. 5 predicted identical

tracking performance for such H and NH signals, because

such a prediction is not sensitive to the predictability of the

target. Real HCs, however, performed distinctly better with

the harmonic signals. As shown in Fig. 6, this is explained

by an anticipatory feedforward response that is developed for

these more predictable signals: the feedforward gain Kpt
is

higher, and the feedforward delay τpt
is considerably smaller

and close to zero. Such data suggests that the predictability
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profoundly affects HC behavior, and demonstrates the effec-

tiveness of feedforward HC models for quantifying the under-

lying HC adaptations. With only a severely limited database

of studies that explicitly focus on target signal predictability,

future studies should seek to understand how HC model

parameters change as a function of target signal properties.

In conclusion, the established feedforward HC model en-

ables unique insight into control strategies that involve feed-

forward, such as pursuit and precognitive control. Identifying

and modeling feedforward responses does, however, in itself

not reveal how the feedforward was established – e.g., pursuit,

preview, precognitive – or whether multiple parallel feedfor-

ward mechanisms coexist; we have thus not yet arrived at the

desired universal model of pursuit and preview. For developing

this universal model, it will be paramount to better understand

how the predictability properties of the target signal affect the

ability of the HC to utilize a feedforward. In realistic scenarios,

it is, however, likely that target signal predictability varies

considerably in time, possibly on a timescale of a few seconds,

calling for methods to identify time-varying HC adaptations.

C. Time-Varying Adaptations

Most of our knowledge on human control behavior is

restricted to stationary, time-invariant control tasks, where HCs

are considered as stationary, time-invariant controllers. In real-

ity, however, it is the adaptive nature of the HC, and how she

or he is able to respond to sudden changes in the environment,

that is of interest, yet still largely unknown [2], [110], [139].

Relevant real-world scenarios where HCs are forced to adapt

their control behavior are, for example, time-varying changes

in the controlled system dynamics (e.g., failure) [98], [99],

[140]–[144], instantaneously modified task constraints (e.g.,

decreased road width) [135], loss-of-control [145], automatic-

to-manual control transitions, and control with time-varying

information feedback (e.g., adaptive simulator motion feed-

back) [146]. Such time-varying HC adaptations are inherently

highly variable, nonlinear, short-duration, and strongly task-

dependent, making them immensely more complex to grasp

than LTI HC behavior. Both our current knowledge of HCs’

capabilities for temporally adapting control, as well as the ca-

pabilities of our methods for measuring adaptive HC dynamics,

are insufficient.

In studies on the adaptive HC, a distinction is often made

between “fast” adaptations in response to sudden changes in

the task or environment, and “slow” variations attributable to

factors such as fatigue, loss-of-attention, and learning [110].

While the latter can still be studied to some extent without

explicitly accounting for time-varying HC behavior, as shown

here in Section V-C, this does not hold for fast HC adaptations.

For certain fast adaptations, HC dynamics seem to remain

largely quasi-linear [98], [99], [147], but with time-varying

HC parameters, resulting in Linear Parameter Varying (LPV)

HC dynamics. However, in extreme scenarios such as loss-of-

control [145], HC dynamics are truly nonlinear, in addition

to time-varying. Understanding HCs’ capacity for adaptation

means grasping which of HCs’ control parameters are critical,

and what HCs’ limitations in the adaptation of these parame-

ters are. It is highly likely, but not yet proven, that some HC

parameters will change faster, while less critical parameters

may change more gradually.

Knowledge of the “life expectancies” of HC parameters,

and how this may vary for changes in (combinations of)

different critical task variables, is needed. This fact also

directly applies to certain control scenarios that are typically

studied with the assumption of time-invariant HC, such as

pursuit or preview tracking [111], [112], where in fact small,

local, time-varying adaptations in HC behavior are suspected

to occur. By assuming an LTI HC, temporal variations due to,

for example, the perceived difficulty of the applied test signals,

are averaged out, irrespective of how strongly they are present.

A thorough, explicitly time-varying, analysis of all HC data is

actually needed to prove that the “time-invariance” hypothesis

that is implicitly applied through the use of describing function

estimates and quasi-linear models is, in fact, valid.

To increase our knowledge of time-varying HC adaptations,

the traditional LTI framework for modeling and analyzing HC

behavior needs to be abandoned, as this requires methods and

model structures that inherently include additional degrees-

of-freedom to account for time-varying behavior. Given how

little we currently know about time-varying HC behavior, this

requires both methods for time-varying identification – i.e.,

detect and quantify time-varying changes in the HC with

preferably no a priori explicit assumptions on the nature of the

temporal variations – and time-varying parameter estimation

and model fitting, to extract high-accuracy time-varying HC

models from measured data. Also, we need to investigate

what excitation techniques and test signals will yield the most

reliable results, with the lowest possible level of intrusiveness.

Examples of time-varying identification methods are those

that rely on windowed LTI HC modeling [148], wavelets

[148], [149], recursive least-squares [147], [150] or Kalman

filtering [147], [151], [152]. Such methods are indispensable

for studying what actually varies in HCs and which “function

approximators” can best describe the adapting HC parameters.

Once known which time-variations in the HC need to be

modeled, promising approaches for the second step of fitting

intrinsically time-varying manual control models to measured

HC data are time-domain modeling [99], [146] or LPV model-

based methods [135], [153], [154]. The main challenge for

time-varying HC identification lies in developing methods that

are sufficiently sensitive and that can reliably pick out quick

and short-duration temporal variations in HC behavior from

inherently noisy data. Of great value to real-world applications
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such as HC monitoring or adaptive support systems would be

methods that are suitable for recursive, real-time implementa-

tion.

Fig. 7 shows preliminary results from a current effort to

further develop time-varying HC modeling approaches based

on the Kalman Filter [147], [151], [152]. For three runs of

experimental HC data from a compensatory tracking task

with an induced change in the controlled system dynamics

Hc(s, t) (centered at t = 40 s) matching that of [99], Fig. 7

shows representative estimated HC equalization parameters:

the HC control gains on the tracking error (Ke) and error

rate (Kė). Matching the expected “theoretical” time-variation

(sigmoid) to counter the induced change in the controlled

dynamics, Fig. 7 shows a distinct drop in Ke after the change

in Hc(s, t), and a notable increase in the error-rate gain

Kė. However, Fig. 7 also clearly shows aspects of time-

varying HC behavior that are currently poorly understood:

1) a considerable variation over different runs of data, 2)

significant time-variations other than those in direct response

to the change in Hc(s, t), and 3) HC adaptations that clearly

lag behind the theoretically optimal responses.

V. EXAMPLE APPLICATIONS

In this section we will give three examples of novel appli-

cations of knowledge and models of human manual control

behavior. Presented are applications in haptic shared control,

simulator fidelity evaluations, and training.

A. Haptic Shared Control/Neuromuscular Adaptations

Understanding the contributions of the time-variant neuro-

muscular system to overall HC behavior is essential when

relevant forces are present on the control device, from external

perturbations (e.g., from wind gusts, potholes, turbulence),

biodynamic feedthrough (e.g., from undesired body move-

ments) [130] or support forces from haptic shared control

[44]. Current developments in NMS cybernetics focus on three

applications: 1) understanding fundamental motor control, by

enabling identification of both the NMS non-linearities and

time-variance, 2) enabling unobtrusive estimation of NMS

admittance during a flying or driving control task and 3) under-

standing co-adaptive systems in human-machine cooperation.

The first goal was already worked towards in early work

aimed at obtaining time-varying and non-linear identification

of NMS dynamics. Recent approaches used small-window

FRFs [42], wavelets [156], recursive least-squares algorithms

[150], and LPV methods [135], [157]. The second goal

requires perturbation techniques to estimate endpoint admit-

tance, which do not significantly influence manual control

behavior. This can be approached either by using small

rapid transient perturbations [158], or by using continuous

perturbations to estimate full-bandwidth admittance. The latter

technique has been used to estimate the arm NMS admittance

during aircraft control [159]. A particularly useful technique

to design continuous force perturbations is the Reduced-

Power Method [129], which allows full-bandwidth admittance

estimates while evoking unperturbed low-bandwidth control

behavior. It has been applied when comparing the NMS

admittance with and without haptic shared control, of the lower

limb during car-following [45] and of the arms while steering

a car [46]. Such analyses show that drivers can increase

their neuromuscular admittance to physically give way to the

guidance forces, thereby executing part of the control actions

suggested by the automation. An additional application for the

quantified NMS admittance is that it allows for a formal design

of the strength of the guidance forces of haptic shared control

[44], [64], as opposed to trial-and-error tuning. The third

goal is being pursued to understand physical co-adaptation of

two mutually adaptive controllers. Examples include human-

human physical interaction [56], the interaction between driver

and intelligent vehicle [44], and physical human-robot inter-

action [56]. Time-varying NMS identification techniques will

prove essential in all these efforts.



12

(a) Visual gain

condition

K
v

,
V

/d
eg

(0,0) (0.5,0.5) (1,0.5) (1,0) IF
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(b) Visual lead constant

condition

T
L

,
s

subj. 1
subj. 2
subj. 3
subj. 4

subj. 5
subj. 6
subj. 7
mean

(0,0) (0.5,0.5) (1,0.5) (1,0) IF
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) Motion gain

condition

K
m

,
V

/I
P

U
T

(0,0) (0.5,0.5) (1,0.5) (1,0) IF
0.00

0.05

0.10

0.15

0.20

0.25

(d) Channel variance fraction

condition

σ
2 u
m
/
σ
2 u
v

,
%

(0,0) (0.5,0.5) (1,0.5) (1,0) IF
0

20

40

60

80

100

120

140

sensor dynamics equalization limitations

Km e−sτm

e−sτv

φ̈

Visual response, Hpe

e

Motion response, Hpx

5.97(1 + 0.11s)

(1 + 5.9s)(1 + 0.005s)

︸ ︷︷ ︸

Hsc

︸ ︷︷ ︸

Hnm

ω2
nm

s2 + 2ζnmωnms + ω2
nm

uv

um

u

n

+

+

−

φ̈s

es

cueing

1

Kmfs

s + ωmf

︸ ︷︷ ︸

Hmf

(a) (b)

Kv(1 + TLs)

(c)

(d)

Fig. 8. Multi-modal HC model, estimated HC model parameters, and visual and motion control contributions from the combined in-flight and simulator
experiment of [155]. Simulator conditions with varying motion filter (Hmf ) settings are indicated with (Kmf , ωmf ), IF indicates in-flight data.

B. Flight Simulator Motion Cueing Fidelity

A key application of manual control cybernetics is evaluat-

ing the fidelity – realism – of virtual environments and vehicle

simulators. An example is the evaluation of flight simulator

motion cueing fidelity; something that simulator manufactur-

ers, engineers, and legislators still struggle with, even after

decades of experience in ground-based simulation [160]. One

of the biggest challenges in simulator motion cueing has

been finding the limits: when does the feedback supplied in

a simulator no longer induce “realistic”, representative, and

effective control behavior?

The known HC adaptation to critical task variables [2]

enables unique objective analysis of the effects of degraded

motion feedback quality. For example, an analytic control-

theoretic criterion based on pilot-vehicle system dynamics

that is sensitive to variations in motion cueing fidelity [22],

[23], [161] has been derived and successfully applied to

a range of different aircraft (both fixed-wing and moving-

wing) and flight maneuvers. In addition, multi-channel HC

modeling and identification techniques [79], [81], [83] can

be used to explicitly measure pilots responses to visual and

(simulator) motion cues during tracking tasks, to discover

under which motion washout filter settings pilots change their

control behavior [26], [29], [155]. This approach also enables

objective quantification of the behavioral discrepancies that

occur in flight simulators compared to real flight [18], [162]

and helps relate these discrepancies to the choices in motion

cueing [29], [155].

Fig. 8 shows multi-modal HC modeling results from [155],

where seven pilots performed an aircraft roll attitude tracking

task both in real flight and in a moving-base flight simulator

for a number of different settings of a first-order high-pass

motion filter, Hmf . In Fig. 8, the different simulator motion

conditions are indicated with “(Kmf , ωmf )”, while “IF” is

the in-flight data. Kmf < 1 or ωmf > 0 rad/s results in

attenuated simulator roll cues. The multi-modal HC model

shown in Fig. 8 includes separate visual (Hpe
) and motion

(Hpx
) responses. Separating these contributions allows for

calculating metrics that provide unbiased insight into 1) how

pilots weigh visual and motion feedback for their control (Kv

and Km), 2) how much visual (lead) equalization they are

required to perform (TL), and 3) the overall contribution of

motion feedback to their control (σ2

um
/σ2

uv
).

The HC modeling results in Fig. 8 show that, in general,

pilot behavior is found to be strongly affected by degraded

simulator motion fidelity. With simulator roll motion cues that

are increasingly attenuated compared to the “perfect” (1,0)

case, pilots rely less on the presented motion information,

leading to a distinctly decreased contribution of the motion

feedback channel Hpx
, see σ2

um
/σ2

uv
in Fig. 8(d). Consistent

for all pilots, this suboptimal control strategy is characterized

by reduced control gains (Kv) and increased visual lead

equalization (TL). Pilots are also not found to compensate for

lower magnitude motion feedback (Kmf < 1) by a matching

increase of their motion response gain, Km. Finally, from the

in-flight (IF) data from [155], pilots were found to control

with a lower gain during in-flight tracking than for the 1-

to-1 simulator motion configuration, a result that might be

attributable to other factors than the quality of the supplied

motion feedback (e.g., environmental variables, see Fig. 2).

Overall, HC modeling results as shown in Fig. 8 are unique

in their ability to reveal the adaptation of pilot low-level

control behavior to reduced simulator cueing and have great

potential for the optimization of simulator motion cueing in

aircraft, but also automotive, simulation.

C. Control Skill Training

Another relevant application for manual control cybernet-

ics is evaluating the development of control skills during

training programs and verifying the overall effectiveness and

transferability of learned skills. Explicit quantification of HC

dynamics, as facilitated by cybernetic HC modeling tech-

niques, allows for opening-up the black box of human control
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adaptation, and observe the progression of HC feedback,

feedforward, and NMS dynamics through learning. This is

especially relevant for evaluating simulator-based training, as

for skill-based control HCs develop low-level automated re-

sponses to continuous feedback signals from the environment

[164]–[166]. This strong environmental dependency means

that a risk exists of teaching skills that do not fully transfer to

the real environment [164], [166].

In aircraft pilot training, the necessity for training simula-

tors that use a motion system to provide a physical motion

sensation as experienced during flight, continues to be a topic

of much debate [167]. The main reason for the continuing

controversy is the fact that collecting convincing and gen-

eralizable evidence regarding training effectiveness requires

reliable and quantitative data regarding trainees’ developing

skills. Most explicit transfer-of-training studies have relied on

ambiguous measures of task performance [167] or “lumped”

HC dynamics estimates [168], providing limited insight and

unconvincing conclusions. Only recently has explicit multi-

modal HC modeling been applied to verify the effectiveness

of simulator-based training of manual control skills in fixed-

base or limited-motion simulators [29], [163].

Fig. 9 shows the multi-modal HC model and data from the

experiment of [163], where 24 task-naive participants, divided

over two groups, were trained for a compensatory tracking task

with motion feedback, to investigate the need for motion in ab

initio skill training. The graphs in Fig. 9 present the estimated

values of key HC equalization parameters that quantify HCs’

use of motion feedback [15], [25], [29], [169]: the visual

response gain Kv , the visual lead time constant TL, and the

motion response gain Km. First, these data show that initial

control skill acquisition is a very slow process, with partici-

pants’ control parameter optimization – i.e., increasing control

gains (Kv and Km) and decreasing visual lead equalization

(TL) – continuing until after 75 runs of the tracking task.

Furthermore, Fig. 9 shows that for Group NM (no-motion

training) the HC equalization parameters indicate only minor

adaptation directly after transfer (run 101) and considerable

renewed adaptation during the 75 evaluation runs. Especially

the learning curves for Km, which are essentially identical

for both groups, provide clear evidence that training without

motion is not effective for training control skills to be applied

in an environment with motion feedback.

In conclusion, contrary to many earlier studies that relied

on performance metrics for training evaluation [167], a cy-

bernetic view on training in motion simulators, as shown in

Fig. 9, provides direct and objective evidence regarding the

effectiveness of such training. Applying the same methodology

to the training of other critical and realistic manual control

tasks (e.g., preview, feedforward) will greatly increase our

understanding of HC adaptation during training, and enable

fundamental training enhancements.

VI. CONCLUSIONS:

TOWARDS A NEW CYBERNETICS

With this paper we attempted to give an overview of the

current state-of-the-art in manual control cybernetics research.

We identified several fundamental shortcomings and proposed

a new framework for bringing theory and methodology to

the level required for addressing current real-world issues.

In our view, this requires a special focus on the adaptive

characteristics of human control behavior in realistic control

scenarios. A crucial step forward would be to abandon the

linear time-invariant modeling framework altogether and move

to modeling structures and methods that inherently include

degrees of freedom to account for time-varying behavior. A
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promising candidate could be the currently rapidly developing

linear parameter-varying (LPV) systems framework, to model

and identify intrinsically time-varying manual control models.

Developing an extended “toolkit” that will allow us to

identify, model and quantify adaptive human control, will lead

to (at least) three key innovations. First, the exploitation of

human controllers’ capability to adapt, and adaptation “invari-

ants”, is key to optimizing the multi-modal control interfaces

that our ever-advancing modern technologies permit. True

knowledge of the adaptive human controller will transform

the current trial-and-error tuning of such interfaces for the

“average” human to a systematic approach to create person-

alized support. Second, a model-based approach to quantify

progress in skill acquisition will be instrumental to improve

(simulator- or computer-based) training procedures and tech-

nologies, as it allows for a mathematical, and objectified,

optimization of training effectiveness. Third, understanding

and mathematically modeling human adaptive control will

enable designers of (semi-)automated systems to create high-

conformance human-like automation that is trusted and ac-

cepted in situations where control is either shared (e.g., haptic

shared control) or handed-over to a vehicle, robot, or computer.

And beyond the realm of supporting human-machine systems,

the insights gained in the unique human adaptation capabilities

could also serve as design inspiration for future generations

of fully autonomous, adaptive robots, ultimately equating the

control and communication in animal and machine [1].
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